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Abstract

Kubernetes is the leading cluster management platform, and within
Kubernetes, an operator is an application-specific program that
leverages the Kubernetes API to automate operation tasks for man-
aging an application deployed on a Kubernetes cluster. Users can
declare a desired state for the managed cluster, specifying their
configuration preferences. The operator program is responsible
for reconciling the cluster’s actual state to align with the desired
state. However, the complex, dynamic, and distributed nature of
the overall system can introduce operator bugs, and lead to severe
consequences, e.g., outages and undesired cluster state.

In this paper, we conduct the first comprehensive study on 210
operator bugs from 36 Kubernetes operators. For all the studied
bugs, we investigate their root causes, manifestations, impacts and
fixing. Our study reveals many interesting findings that can guide
the detection and testing of operator bugs, as well as the develop-
ment of more reliable operators.
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1 Introduction

In cloud computing era, more and more cloud applications have
been developed to run on top of various cluster management plat-
forms [19, 21, 24, 25, 60, 64, 66]. These cluster management plat-
forms expose a restricted set of commands and operations to users
through APIs, with the goal of simplifying the management and op-
eration of application clusters. Presently, Kubernetes has emerged
as the most widely adopted cluster management platform [22, 23].

To automate complex application-specific operation tasks be-
yond what Kubernetes itself provides, e.g., software upgrades, con-
figuration updates and autoscaling, operation programs called op-
erators [15, 17] are introduced. Operators follow the Kubernetes
control loop principle, and extend the Kubernetes API to auto-
mate and customize the management of applications running on
Kubernetes. As shown in Figure 1, users can specify their configu-
ration preferences by declaring the desired state of an application
cluster. Operators continuously monitor the state of the managed
cluster, analyze state changes and reconcile the cluster’s current
state to align with the desired state. The Kubernetes operator pat-
tern has gained significant popularity and adoption in the Kuber-
netes ecosystem. Many cloud systems, e.g., Prometheus [9], etcd
[8], MySQL [12, 18], Elasticsearch [11] and Kafka [10] today are
managed by Kubernetes operators.

The correctness of operators is critical to cloud system reliability.
Unfortunately, operator bugs pose a significant threat to the reli-
ability of cloud systems. Operators run within complex, dynamic
and distributed environments. To achieve the desired state, a single
operator can contain sophisticated workflow logic that coordinates
multiple steps and collaborates with multiple built-in Kubernetes
controllers, leading to intricate interactions and potential conflicts.
Moreover, operators face frequent operation changes with varying
goals from users, as well as unpredictable environmental failures
such as crashes and network disruptions. This combination makes
Kubernetes operators prone to operator bugs. These operator bugs
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can lead to severe consequences such as application outages, data
loss, and security issues [13, 14, 16, 33, 46-50].

Some approaches have been proposed to test and verify the
correctness of Kubernetes operators [41, 62]. Sieve [62] tests the re-
liability of operators by injecting faults (e.g., node crashes, network
delays) and perturbing the operators’ views of the current system
state. Acto [41] tests the functional correctness of operators by
automatically generating a sequence of desired state declarations.
Kivi [54] verifies the correctness of Kubernetes controllers with
respect to a set of properties by model checking the interactions
among controllers and events at the model level. Anvil [63] verifies
whether the controller implementation in Rust satisfies eventually
stable reconciliation for all executions. However, it remains unclear
whether there are patterns among operator bugs and what bugs
existing approaches may fail to detect. We also lack an operator bug
dataset for future research. We believe that an in-depth study of
operator bugs and an operator bug dataset can greatly promote the
reliability research in operators on cluster management platforms.

In this paper, we propose the first comprehensive study on 210
Kubernetes operator bugs collected from 36 popular open-source
operators developed by official teams of the managed systems, com-
mercial vendors and open-source communities. These operators
are adopted for managing various important cloud systems, e.g.,
Cassandra [1], MySQL [6], Redis [3], TiDB [7], etcd [5], MongoDB
[2], Prometheus [4], etc. We thoroughly study these bugs and try
to answer the following research questions.

¢ RQ1 (Root cause): What are root causes for operator bugs?
¢ RQ2 (Bug manifestation): How do operator bugs manifest
themselves? How are operator bugs triggered?

RQ3 (Bug impact): What impacts do operator bugs have?
RQ4 (Bug fixing): How are operator bugs fixed?

RQ5 (Detection capability of existing approaches): How
effectively can existing approaches detect operator bugs?

Through the in-depth investigation on Kubernetes operator bugs
against the above five research questions, we obtain some interest-
ing findings. We summarize some main findings as follows.

e Operator bugs are caused by four types of bug patterns, i.e.,
incorrect access control configuration (4%), incorrect custom
resource definition (9%), incorrect state observation and analy-
sis (60%), and incorrect reconciliation (27%). These bug patterns
motivate new approaches to detect operator bugs.

o Almost all operator bugs can be triggered by no more than three
operation requests, no more than two state property changes,
and no more than two faults. 86% of operator bugs can be
triggered deterministically by executing a sequence of input
events in a certain order. This indicates that we can detect
operator bugs with relatively small workloads.

e 83% of operator bugs require updating specific state proper-
ties, or updating the properties with specific values. 10% of
operator bugs require invalid operation requests. This indicates
that we should consider these special cases when devising test
scenarios.

® 54% of operator bugs only lead to silent failures such as unstable
state and undesired state. This suggests that we need to design
new test oracles to effectively detect silent operator bugs.
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® 55% operator bugs can be detected by existing testing approaches
[41, 62]. This indicates that we need to develop more effective
operator bug testing and detection approaches.

In summary, we make the following main contributions.

e We present the first empirical study on Kubernetes operator
bugs from five aspects, i.e., root causes, bug manifestations,
bug impacts, bug fixing and detection capability of existing
approaches. Our findings can open up new research directions
in combating operator bugs.

Our 210 documented operator bugs can serve as a bug bench-
mark for future work on combating Kubernetes operator bugs.
We have made our collected operator bugs and analysis results
available at https://doi.org/10.5281/zenodo.13340387.

2 Preliminaries

In this section, we introduce basic concepts used in the paper.

2.1 Kubernetes

Kubernetes (also known as K8s) provides a powerful framework
for orchestrating and managing containerized applications. The
underlying physical resources (e.g., CPU, memory and storage)
present in the Kubernetes cluster are abstracted into a set of logical
resources that Kubernetes can manage and orchestrate, such as
Pod (workload resource), Service (networking resource), Persistent
Volume (storage resource), ConfigMap (configuration resource)
and Secret (security resource). We also refer to these resources
as Kubernetes built-in resources.

Kubernetes objects (we also refer to them as state objects or re-
source objects), are persistent entities used to manage and interact
with the underlying resources in a Kubernetes cluster. These objects
represent the state of the managed cluster and define how the clus-
ter should behave. Kubernetes objects have nested spec and status
properties, describing the desired and current states, respectively.
The Kubernetes API server exposes the Kubernetes API to allow
querying and manipulating the state of Kubernetes objects.

Kubernetes offers a set of built-in controllers that operate asyn-
chronously, e.g., ReplicaSet controller and StatefulSet controller.
These built-in controllers continuously watch the actual and the
desired states of the resources they manage, and ensure that the
actual state of the these resources matches the desired state defined
by the relevant Kubernetes objects [20]. Built-in controllers provide
essential features like scaling and self-healing to manage appli-
cations. However, for more complicated operation tasks that are
specific to individual applications, such as application upgrades and
configuration changes, users must write ad-hoc scripts for different
one-off tasks, which can be cumbersome and error-prone.

2.2 Kubernetes Operator

To automate repeatable operation tasks for individual applications,
the operators were introduced. Operators enable users to describe
complex operation tasks in a declarative way. Additionally, they
leverage custom controllers that encapsulate application-specific
logic and operation knowledge to handle complex operation tasks.
B Components in Kubernetes operator: Kubernetes operators
are built upon the following two kinds of components.
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Figure 2: An example of the custom resource definition (CRD)
and an instance of the associated custom resource (CR).

Custom resource definition (CRD). Custom resource definitions
enable operator developers to extend the Kubernetes API by defin-
ing their own custom resources (CRs). A custom resource stores
structured data in custom properties (or fields). Users can declara-
tively describe the desired state of a cluster by creating or modifying
instances of custom resources defined by CRDs. As shown in Fig-
ure 2, CRDs define the schema of custom resources, listing all the
configurations (i.e., properties) available to users of the operator.
Additionally, CRDs define data types and validation rules, such
as required fields, allowed value ranges, and regular expression
patterns, for the custom resource properties.

Custom controller. Kubernetes operators utilize custom controllers
to monitor and reconcile the desired state of custom resources. Cus-
tom controllers are typically implemented as Kubernetes controllers.
They follow the control loop principle shown in Figure 1, and ex-
tend the functionality of Kubernetes to applications by leveraging
the Kubernetes API and built-in controllers.

H Operator pattern: Kubernetes operators follow a declarative
approach to manage the applications running on Kubernetes. We
use Figure 3 to illustrate how Kubernetes operators work.

Step 1: Deploy and configure operators. Operator developers first
need to set up the environment for operators. After deploying
the operator’s custom controller on Kubernetes, developers need
to configure API access control for operators to ensure that the
operator has the appropriate permissions to access the relevant
entities (D). This involves creating objects related to API access
control, such as Roles and RoleBindings.

Then developers need to register CRDs associated with the cus-
tom controller to the API server ((2)). CRDs are typically described
in YAML or JSON manifest files. Once the manifest file is applied,
a corresponding CRD object will be created. Then the API server
can serve custom resources defined by the CRD, and enable users
to interact with custom resources through the Kubernetes APL

Step 2: Observe and analyze changes. Once the operator is ready,
the custom controller continuously watches for changes in the
resources it is responsible for ((3)). Users declare a desired system
state by creating or modifying instances of custom resources ((®).
The API server is responsible for validating the operations that
change a CR, ensuring that the CR adheres to specific rules and
constraints defined in the CRD, and forwarding change events
to the operator ((3)). When changes are observed, the operator
analyzes the desired state and current state of the managed cluster
to determine whether a reconciliation should be applied.

Step 3: Reconcile the managed cluster. If the current state of the
cluster deviates from the desired state, the operator starts making
changes aiming to align the current state with the desired state. The
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Figure 3: The operator pattern in Kubernetes. CRD refers to
Custom Resource Definition.

operator can modify the state of some Kubernetes objects including
custom resources and built-in resources such as Pods (). These
changes can trigger another round of the operator’s reconciliation
process, or activate the reconciliation process of built-in controllers
(). Ultimately, the actual state of the managed cluster will be
reconciled to the desired state ((8)).

The Kubernetes operator will continuously repeat the above
observing, analyzing and reconciling process. In this paper, we use
reconciliation iteration to refer to a single cycle of the reconciliation
process performed by the operator.

2.3 Vulnerabilities in Kubernetes Operators

The correctness of operators is critical to cloud system reliability.
Although Kubernetes operators are designed to be resilient, the
complex operation scenarios make operators prone to errors. First,
users can frequently change desired states with different goals. The
desired states declared by users can be either valid or invalid. Op-
erators may fail to reconcile the system state due to overlooking
certain operation scenarios. Second, the operator may be incor-
rectly deployed or configured. For example, the custom resource
definitions can be incorrect, or the custom controller might not have
the necessary permissions, etc. Third, the reconciliation process
of operators can involve intricate interactions and asynchronous
issues. A single operator can coordinate multiple steps to reconcile
the manged cluster to a desired state. It can also collaborate with
multiple built-in controllers, and interact with external components
(e.g., databases). Moreover, operators have to combat unpredictable
environmental failures such as node crashes.

3 Methodology

In this section, we introduce how we collect (Section 3.1) and ana-
lyze (Section 3.2) bugs, and discuss threats to validity (Section 3.3).

3.1 Collecting Operator Bugs

We collect 210 real-world Kubernetes operator bugs in 36 popular
open-source operator projects hosted on GitHub. Table 1 shows the
statistics about our studied operators. The developers of these op-
erators include official teams of the managed systems, commercial
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vendors and open-source communities. These operators cover dif-
ferent versions of Kubernetes and are used to manage a diverse set
of systems, including distributed storage systems (e.g., Cassandra,
etcd), database management systems (e.g., MySQL, TiDB), moni-
toring/tracing systems (e.g., Prometheus, Jaeger), data processing
systems (e.g., Apache Kafka, Apache NiFi), machine learning plat-
forms (e.g., Kubeflow), search engines (e.g., Elasticsearch), and so
on. Operators involved in our study range from tens of thousands
to millions of lines of code.

For the target operator projects, we select operator bugs via the
following steps. (1) We utilize keywords such as "operator OR con-
troller", "bug", "reconcile", "is:closed", "link:pr" and their variations
to search potentially relevant issues from their corresponding issue
repositories (e.g. Github, Percona). This search returns us with 3,049
issues. (2) For each issue, we manually inspect the issue description,
developer comments, fixing patches, and rebuild bug scenarios step
by step. To ensure the accuracy of our study and provide more
meaningful conclusions, we filter out issues that lack clear bug
descriptions, are not confirmed as bugs by developers or do not
have available fixing information. We also exclude issues that are
not related to the operator mechanism, issues caused by simple
programming errors (e.g., typos), and issues that we cannot clearly
understand or duplicate with existing bugs. We finally keep 210
operator bugs for further investigation.

3.2 Analyzing Operator Bugs

To answer our five research questions, we perform an in-depth
analysis of the 210 operator bugs based on their issue descriptions,
developer discussions, available fixing patches and source code. We
further assign the bugs into different categories according to their
root causes (Section 4), bug manifestations (Section 5), bug impacts
(Section 6) and bug fixing (Section 7). Besides, we check whether
each operator bug can be detected by existing approaches [41, 62],
and analyze their detection capabilities (Section 8).

We adopt the open card sorting approach to build the categories
for operator bugs’ root causes, manifestation, impacts and fixing,
which is widely-used in existing empirical bug studies [30, 34, 38,
43, 69, 70]. For each operator bug, we extract necessary information
according to its bug report, and write down its detailed bug scenario
step by step. For bug root causes, we create four initial categories
based on the operator’s lifecycle. During bug investigation process,
we further reveal more interesting categories. For bug manifesta-
tions, we extract related information, e.g., the number of operation
requests and faults, from the bug triggering process. For bug im-
pacts, we build the categories based on the final impacts caused
by operator bugs. For bug fixing, we extract necessary informa-
tion from issue reports, and available fixing patches. To figure out
whether an operator bug can be detected by existing approaches
[41, 62], we carefully study these approaches, and check whether
these approaches can support an operator bug’s triggering condi-
tions and design a proper oracle to identify the bug, theoretically.

During the above process, we try to assign each bug into existing
categories in a dimension based on the extracted information. If we
cannot find a suitable category for a bug, we create a new category.
We also refine categories if necessary. All operator bugs are studied
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Table 1: Target Operators and Collected Operator Bugs

Operator System Dev. #Stars LOC # Bug
IST/CassOp Cassandra Instaclustr 237 10.9K 3
RabbitMQOp RabbitMQ Official 778 27.8K 5
NifiOp Apache NiFi Community 106 98.5K 2
KafkafOp Apache Kafka  Strimzi 4424 373.9K 8
0O0S/CassOp Cassandra 00Ss 185 49.4K 4
PCNA/MDBOp ~ MongoDB Percona 300 145.8K 31
CloudOp Elasticsearch Official 2461 4385K 7
VMOp VictoriaMetrics ~ Official 378 85.0K 7
PostgreDBOp PostgreSQL Zalando 3936 47.1K 8
ZooKeeperOp ZooKeeper Pravega 358 20.7K 7
ActionsOp Github Actions  Official 4166 97.9K 7
MinioOP MinIO Official 1082 2814K 2
OTELOp OpenTelemetry — Official 1035 117.6K 4
PromOp Prometheus Official 8702 3055K 6
XtradbOp MySQL Percona 494 141.1K 15
KubeLogOp Logging mech.  Official 1477 1304K 6
JaegerOp Jaeger Official 981 119.7K 5
MysqlOp MySQL Percona 95 70.5K 4
AwxOp Ansible AWX Official 1130 14.0K 1
CMT/CassOp Cassandra Community 12 51.0K 2
KubeflowOp Kubeflow Official 1439 96.8K 10
K8S/CassOp Cassandra K8ssandra 166 53.6K 3
SPH/RedisOp Redis Spotahome 1436 45.1K 1
OCK/RedisOp Redis OCK 663 302.1K 4
CockroachOp Cockroach Official 264 35.9K 2
TidbOp TiDB Official 1178 4009K 5
OFC/MDBOp MongoDB Official 1136 31.9K 4
KnativeOp Knative Official 174 1884.0K 3
EtcdOp Etcd Official 1737 13.1K 1
SplunkOp Splunk Official 192 190.6K 1
ElasticsearchOp  Elasticsearch Zalando 351 16.1K 2
IstioOp Istio Banzai Cloud 535 100.6K 2
OpenSearchOp  OpenSearch Official 343 41.6K 16
TerraformOp Terraform Official 449 1035K 4
ArgocdOp Argo CD Official 567 303.3K 4
FDBOp FoundationDB  Official 222 109.3K 14

OOS refers to Orange Open Source, and OCK refers to Opstree Container Kit.

by all authors of the paper and reviewed through multiple rounds
to ensure correctness and consistency.

3.3 Threats to Validity

Kubernetes is considered the most representative and popular clus-
ter management platform. It has become the de facto standard for
deploying and managing cloud-native applications. We collect op-
erator bugs from 36 popular Kubernetes operators developed by
official teams of the managed systems, commercial vendors and
open-source communities. These operators have tens to thousands
of stars on GitHub, and are utilized for managing diverse systems
with varying functionalities. We have not intentionally ignored any
operator bugs in these Kubernetes operators. We believe that our
studied operator bugs provide a representative sample of operator
bugs in Kubernetes operators.

As an empirical and qualitative bug study, our study results
rely on the understanding of the researchers involved, which can
introduce implicit bias towards individual researchers’ expertise.
We take several measures to mitigate this threat. We adopt widely-
used empirical bug analysis protocols in existing studies [30, 34, 38,
43, 69, 70], e.g., how to collect and analyze bugs. All the operator
bugs studied in this paper have been thoroughly discussed and
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Finding 1: 4% (9/210) of operator bugs are caused by incorrect
access control configuration, preventing operators from operating
Kubernetes resources.

Bug Pattern #Bug
Incorrect access control configuration (4%) 9
Incorrect CRD (9%) Incorrect CRP sPeciﬁcaFion 10
Incorrect validation logic 10
No observation of resource changes 5
Incorrect state observation No analysis of resource changes 38
and analysis (60%) Incorrect analysis logic 29
Incorrect state identification 53
Incorrect resource update 19
K8s specification violation 9
Reconciliation loop 7
Incorrect reconciliation (27%) | No synchronization of resource 7
operations
Incorrect order of resource operations | 3
Inconsistent reconciliation 2
Others 9

confirmed by all authors. In cases of disagreements regarding an
operator bug, we conduct further investigations until a consensus is
reached. For the sake of the reliability of our study results, we filter
out those bugs that lack clear bug descriptions, as well as those that
we cannot clearly understand or reach a consensus on. This is a
necessary trade-off to maintain the accuracy of our study results.

4 Root Cause

We classify our studied operator into four main categories according
to their root causes as show in Table 2.

4.1 Incorrect Access Control Configuration

To secure cluster resources, Kubernetes operators must be autho-
rized with proper permissions to access relevant Kubernetes objects
and interact with the managed system. To achieve this, develop-
ers need to configure objects related to API access control. For
example, developers can create RBAC (Role-Based Access Control)
objects to manage permissions based on user roles, and create ABAC
(Attribute-Based Access Control) objects to manage permissions
based on fine-grained attributes of the user. By creating such ob-
jects, developers can flexibly and precisely control what actions an
operator can perform. Bugs in above processes can make operators
fail to access certain entities, or introduce security vulnerabilities.

In our study, 9 operator bugs are caused by incorrect access
control configuration. Take CMT/CassOp#30! as an example, the
installation of the operator fails due to lacking access permissions
to nodes. Another example is OpenSearchOp#717, in which the
“clusterrole/codegen” marker is not appended to the controller, pre-
venting the operator from accessing certain resources. Access con-
trol configuration is fundamental for running operators. However,
these configurations can be complicated, involving defining fine-
grained permissions, coordinating access control policies across
multiple namespaces, ensuring seamless access control across third-
party integrations, and adapting the access control configuration
to the changing requirements of operators. Developers may easily
overlook some important settings.

LAll discussed issues contain hyperlinks, and are clickable.

4.2 Incorrect Custom Resource Definition

The custom resource definition (CRD) serves as a schema or blue-
print for the custom resources that it defines, declaring the expected
properties (or fields), data types, and validation rules that the cus-
tom resources must conform to. When creating or modifying a
custom resource, it must adhere to the structure and properties
outlined in the associated CRD. However, the specification of the
CRD and the associated CR validation logic can be incorrect. There
are two bug scenarios here.

Incorrect CRD specification (10 bugs). A CRD may not be
well-specified, which can prevent the operator from being func-
tional, lead to inconsistent behaviors or result in unexpected errors.
For example, the properties in CRDs can be specified with incorrect
data types, incorrect default values and incorrect validation rules.
Operator developers may overlook the specification of certain prop-
erties they care about, or include redundant properties in the CRD.
For example, in PostgreDBOp#838, the CRD incorrectly specifies the
s3_force_path_style property as a string type, when it should
be a boolean. In another bug RabbitMQOp#404, the replicas prop-
erty is specified as optional in the CRD. However, users cannot
create a CR without specifying the replicas property.

Incorrect validation logic (10 bugs). When a custom resource
is created, modified, or deleted, the Kubernetes API server performs
the basic validation based on the associated CRD, including verify-
ing data types, validating required properties, etc. Except for the
validation rules defined in CRDs, operators have the flexibility to
implement additional validations for managing the CRs, e.g., en-
suring the existence of a “customerld” in the value of the customer
property. However, the additional validation logic implemented
by operators may be missing or incorrect. In TerraformOp#18, the
operator does not provide additional validation logic to ensure the
value of the output property is a valid JSON string. When the op-
erator tries to transform the value of the output property, which is
an invalid JSON string, into JSON format, the operator encounters
a null pointer exception. In PromOp#3942, the operator does not
implement additional validation logic to check the value of the prop-
erty metricRelabeling.action. As a result, users can upload an
invalid action value, which can cause the operator to fail in loading
the configuration.

Finding 2: 9% (20/210) of operator bugs are caused by incorrect
CRDs, including incorrect CRD specifications and incorrect CR
validation logic.

4.3 Incorrect State Observation and Analysis

Once the operator is ready, it runs in an infinite loop, continuously
watching and analyzing the changes to the state of both custom
resources and built-in resources that it manages. Bugs that are
caused by incorrect observation or analysis of change events can
be categorized into four categories.
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No observation of resource changes (5 bugs). To receive noti-
fications about changes to concerned resources, an operator needs
to register listeners on specific resources with the Kubernetes API
server. If the operator fails to correctly watch specific resources, it
will be unaware of any updates occurring to those resources. As a
result, the operator will not be able to take reconciliation actions
based on those updates. In VMOp#222, the operator does not regis-
ter listeners on the ConfigMap and Secret resources. This makes
the operator never receive notifications about changes to these
two kinds of resources, thus cannot perform the corresponding
reconciliation actions.

No analysis of resource changes (38 bugs). When the operator
observes a resource change event, it will examine the differences
between the current state and the desired state of the resource to
accurately identify which properties of the resource have changed.
Based on the differences found during the comparison, the operator
determines the appropriate actions to bring the managed cluster
into the desired state. Lacking the analysis on changes in certain
resource properties will lead to the operator being unable to react
to the changes, even the change events have been observed. In
MinioOP#449, the operator does not analyze the change of the
property env in CR. Therefore, even the operator can observe the
change in CR, it will never take actions to reflect it in the cluster.

Incorrect analysis logic (29 bugs). The operator analyzes spe-
cific changes and determine which reconciliation actions should be
performed, by comparing the current system state and the expected
system state. However, the analysis logic can be incorrect.

o The state comparison logic can be incorrect. For example, in
VMOp#298, the operator should add the values of two prop-
erties, i.e., BasicAuth and TLSConfig, to the vmalert param-
eters if they are not null. However, the operator developers
mistakenly nest the TLSConfig != nil check within the
BasicAuth != nil check. As a result, users cannot add the
value of TLSConfig to the vmalert parameters when BasicAuth
is set to null. 15 bugs belong to this category.

e The resources chosen for comparison can be incorrect or in-
complete. For example, in K8SPS#227, there are two properties
MySQL .Expose and Proxy.Router.Expose in the custom re-
source. The MySQL operator is unable to reconcile the modifica-
tions on the MySQL . Expose property, because the operator mis-
takenly uses Proxy.Router.Expose instead of MySQL .Expose
when analyzing the changes. In another bug PCNA/MDBOp#578,
when reconciling the ssl configuration, the MongoDB operator
only checks if the ssl secret exists. If it does not exist, the oper-
ator creates the ssl secret and then proceeds to create the cor-
responding ssl-internal secret. However, an issue arises when
the operator crashes between these two reconciliation actions.
Upon restarting, the operator fails to recover the reconciliation
process because it detects that the ssl secret already exists. 14
bugs belong to this category.

Incorrect state identification (53 bugs). Operators should
accurately retrieve the system states for comparison, particularly
the states of relevant resource objects. However, a buggy operator
may encounter errors when retrieving resource states, or incorrectly
identify erroneous or outdated resource states. Take VMOp#215
as an example, the operator overlooks the possibility of certain
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# NifiCluster
status: reconcile(){ Q

if cr.status.State != RollingUpgrading {
trigger another reconciliation iteration

UpdateCRStatus (Reconciling)

State: Reconciling

) )
# NifiCluster

status: trigger another reconciliation iteratio
UpdateCRStatus (Running)

State: Running } -

l ‘ The Status.State field flickers between
Reconciling and Running!

Figure 4: Bug NifiOp#119: Reconciliation loop. In this bug,
the reconciliation actions continuously trigger new reconcil-
iation iterations.

properties being unassigned in the custom resource, and attempts
to access sub-properties under a null property.

Finding 3: 60% (125/210) of operator bugs are caused by incorrect
observation or analysis of state changes, i.e., no observation of re-
source changes, no analysis of resource changes, incorrect analysis
logic and incorrect state identification.

4.4 Incorrect Reconciliation

During the reconciliation process, operators typically utilize the
Kubernetes API to manipulate Kubernetes objects, and collaborate
with multiple built-in Kubernetes controllers that operate asyn-
chronously to reconcile the desired system state. The bug scenarios
caused by incorrect reconciliation are as follows.

Incorrect resource update (19 bugs). During reconciliation,
the operator may mistakenly update unexpected resources, or up-
date erroneous states induced from bugs or invalid CR declarations
that bypass the validation mechanisms to the resources. For exam-
ple, in ActionsOp#438, the operator mistakenly appends the same
volume twice to the pod. This causes the operator to fail in creating
the pod resource. In K85/CassOp#1023, the operator stores the in-
valid pod name provided by users in status.NodeReplacements,
causing the operator to become partially nonfunctional.

K8s specification violation (9 bugs). Operators rely on the un-
derlying Kubernetes platform for managing the application cluster.
During this process, operators should ensure that the reconcili-
ation actions follow the specifications and requirements of the
Kubernetes platform. Otherwise, the reconciliation will fail. In Pro-
mOp#4944, the Prometheus operator attempts to create a volume
with a name that exceeds the 63-character limit imposed by the
Kubernetes platform. This violates the naming constraints set by
Kubernetes, leading to failures in the volume creation process.

Reconciliation loop (7 bugs). Kubernetes operators follow the
control loop principle shown in Figure 1. Operators continuously
watch state changes and perform reconciliation for the changes.
When performing reconciliation actions, operators may update the
state of some resource objects, which can potentially trigger an-
other round of reconciliation. Bugs within this process can cause
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Figure 5: Bug IST/CassOp#398: No synchronization of re-
source operations. CDC refers to CassandraDateCenter, STS
refers to StatefulSet. In this bug, the quick deletion of pod
causes its associated PVC to not be removed.

operators to endlessly perform reconciliation, leaving the managed
cluster unstable. For example, in NifiOp#119 shown in Figure 4,
during each reconciliation iteration, the NifiCluster operator up-
dates the State property of its associated custom resource, i.e.,
NifiCluster, to “Reconciling” if the property is not already set to
“Reconciling”. Subsequently, the operator updates State to “Run-
ning”. This leads to the NifiCluster’s state being modified in every
iteration of the reconciliation loop, resulting in the State field
flickering between “Reconciling” and “Running”.

No synchronization of resource operations (7 bugs). In order
to bring the managed cluster to the desired state, the operator may
need to update multiple resources and coordinate with multiple
controllers. However, the operations on certain resources have
specific dependencies, requiring them to be executed in a particular
order. Lacking synchronization for the operations on such resources
can lead to an incorrect system state.

In IST/CassOp#398 shown in Figure 5, the user tries to scale
down the cluster by changing the node property in the CR, i.e.,
CassandraDateCenter (CDC), from 2 to 1 (@). Once the CDC change
event is detected (@), the CDC controller takes actions to modify
the replica property of a built-in resource called StatefulSet (STS)
from 2 to 1 (@). The built-in STS controller is notified about the
change of STS (@), and initiates a request to the API server to delete
a pod (@). The pod to be deleted will first be marked for deletion by
setting the deletionTimestamp field of the pod object to a non-nil
value (@), which will trigger a pod change event (@). The CDC
controller is expected to handle the event and remove the PVC
attached to the pod marked for deletion (f))). However, if the pod
is deleted quickly (@) before the CDC controller handles the pod
change event, the CDC controller will fail to remove the attached
PVC, since it cannot see the deletion marking event ().

Incorrect order of resource operations (3 bugs). During the
reconciliation process, although operations on multiple resources
are executed in a synchronous manner, the execution order of these
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operations may be incorrect or inappropriate. This will result in a
failed reconciliation, or prevent the operator from handling unex-
pected faults. Take FDB#1226 as an example, when users migrate the
cluster from using DNS names to IP addresses, the FoundationDB
operator removes the DNS service before replacing the transaction
subsystem. However, the replacement process still requires the use
of the DNS names, causing the reconciliation to get stuck.

In another example NifiOp#49, when the user specifies a new
configuration, the NiFi operator handles this operation task by
breaking it down into multiple fine-grained tasks that can be con-
ducted across multiple reconciliation iterations. First, if Nifi oper-
ator detects inconsistencies between the CR and the ConfigMap
resource, it will update the ConfigMap resource to align it with
the CR, and then update “ConfigOutofSync” to CR’s status field.
Subsequently, the operator checks whether “ConfigOutofSync” is
set. If true, the operator will delete and restart the pod for loading
the new configuration. This reconciliation process works fine when
there are no faults. However, when the NiFi operator crashes after
updating the ConfigMap resource and before updating “ConfigOut-
ofSync” to CR’s status field, the restarted operator will not restart
the pod to load the new configuration, since “ConfigOutofSync” is
not set. To combat unexpected operator crashes, “ConfigOutofSync”
should be set before updating the ConfigMap resource.

Inconsistent reconciliation (2 bugs). A single operator can co-
ordinate multiple steps and collaborate with multiple controllers to
reconcile the system state. Inconsistent decisions can cause reconcil-
iation conflicts. For example, in IST/CassOp#400, for a scale-down
request, the operator decides to decommission the last pod returned
by the Kubernetes API List and updates the pod’s status to prevent
it from being used during deletion. Then the operator relies on the
built-in StatefulSet controller to delete a pod from the cluster, which
will select the pod with the largest ordinal to delete. However, there
is no guaranteed order in the List API by default. As a result, the
operator may decommission a different pod than the one selected
for deletion by the StatefulSet controller. This can cause the deletion
operation to be blocked forever.

Others (9 bugs). We categorize the remaining operator bugs
caused by incorrect reconciliation logic as others. Take PromOp#3801
as an example, when creating a group of shards, the operator mis-
takenly exits the loop after creating the first shard. As a result, the
remaining shards are never created.

Finding 4: 27% (56/210) of operator bugs are caused by incorrect
reconciliation, e.g., incorrect resource update, K8s specification
violation, reconciliation loop, no synchronization of resource oper-
ations, and incorrect order of resource operations.

5 Bug Manifestation

We study the input conditions for triggering an operator bug, e.g.,
the number of operation requests and faults (Section 5.1). We also
discuss the complexity of the bug triggering process, e.g., the num-
ber of resources and controllers involved during the bug manifes-
tation process (Section 5.2). Finally, we discuss whether operator
bugs can be triggered deterministically (Section 5.3).
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5.1 Input Conditions

To trigger an operator bug, we need to initiate some operation
requests, e.g., changing one or more property values in a custom
resource or a built-in resource. As shown in Figure 6a, We find
that most of the bugs (84%) involve no more than 2 operation
requests. Specifically, 14 bugs involve operation requests on built-
in resources. All the bugs require at least one operation request,
i.e., the create CR request for deploying the cluster. In addition to
the cluster deployment request, 18% of operator bugs require other
operation requests that create or delete a resource object, and 50%
of bugs also require the operation requests that change one or more
properties of a resource object. As shown in Figure 6b, most of the
bugs (83%) require the change of no more than 2 properties. For the
bugs that require modification requests, an average of 3.64 property
values are changed per bug.

We further divide the operator bugs into three categories ac-
cording to the complexity of involved operation requests. (1) 17%
of operator bugs only require simple operations, e.g., change the
value of any single property of a resource object, or delete a re-
source object. (2) 30% of operator bugs require changing the values
of specific resource properties, adding/deleting specific properties
in the resource object, or creating resource objects with specific
properties. (3) 53% of operator bugs require creating/updating re-
source objects with specific property values. Some of them (34 bugs)
involve specific constraints among multiple property values.

We also investigate whether the performed operation requests
are valid operations, i.e., declaring an achievable desired state with
valid values. As a result, 21 bugs require invalid operations that
would bring the managed system to an error state, e.g., providing a
wrong pod name in K8S/CassOp#1023 and changing maxUnavail-
able from 0 to -1 in CloudOp#2034.

Faults is another input condition for triggering an operator bug.
For example, in NifiOp#49 we mentioned before, the operator bug
manifests when the NiFi operator crashes between updating the
ConfigMap resource and updating “ConfigOutofSync” to CR’s sta-
tus. We cannot reproduce this bug without injecting the crash fault.
As shown in Figure 6¢, we find that only 19 bugs (9%) need faults,
including node crashes, network delays and network disconnection.
For these bugs, the required number of faults does not exceed 3.

Finding 5: Most of the operator bugs can be triggered with no more
than 3 operation requests. 83% of operator bugs require updating
specific properties in the resource object, or updating the properties
with specific values. 9% of operator bugs require faults such as
node crashes.

5.2 Complexity of the Bug Triggering Process

Before a bug manifests itself, the bug triggering process may involve
multiple controllers (including custom controllers of Kubernetes
operators and built-in controllers) manipulating multiple resources
across multiple reconciliation iterations. The involved resources,
controllers and reconciliation iterations are not the conditions for
triggering an operator bug, but rather the characteristics that mani-
fest during the bug triggering process. Such characteristics indicate
the complexity of an operator bug.

Qingxin Xu, Yu Gao, and Jun Wei

(a) Operation request | 1 (39%) | 2 (45%) [3(13%)1
(b) Changed properties [N0(25%)0] 1 (58%) [2(14%)[3]
(c) Fault | 0(90%) [1]2]
@001 02 O3 04 O5 m6

Figure 6: Distributions of input conditions.
(a) Built-inresource [ 0(29%) | 1 (53%) [2(13%)3]
(b) Built-in controller | 0(96%) [1]
(c) Reconciliation iteration | 1(39%) | 2 (46%) [ 314]

B0 01 0203 0405

Figure 7: Distributions of involved built-in resources, built-
in controllers and reconciliation iterations during the bug
manifestation process.

Figure 7a shows the distribution of involved built-in resources for
our studied operator bugs. 71% of bugs involve reading or writing
built-in resources. The top 3 most commonly manipulated built-in
resources are Pod, StatefulSet, and PersistentVolumeClaim. Around
50% of bugs involve the manipulation of these three types of re-
sources.

Figure 7b shows the distribution of involved built-in controllers.
Only a small portion of operator bugs (4%) involve built-in con-
trollers. The results indicate that most of the operator bugs lie in the
single operator rather than the collaboration with multiple built-in
controllers.

Figure 7c shows the number of reconciliation iterations involved
for custom controllers. 39% of bugs require only one reconciliation
iteration. Most of the bugs (94%) involve no more than 3 reconcilia-
tion iterations during the bug triggering process.

Finding 6: About haft of operator bugs involve manipulating
built-in resources. Most of the operator bugs lie in the single opera-
tor. 39% of operator bugs involve only one reconciliation iteration.

5.3 Bug Determinism

We determine whether an operator bug can be triggered determin-
istically by checking if the bug is guaranteed to manifest when the
required sequence of input events occurs. For almost bugs (86%),
we only need to explore the combination and permutation of input
events, i.e., operation requests and faults, but no additional timing
relationship. Among the 29 non-deterministic bugs, 6 bugs require
specific ordering of internal events. 19 bugs require an input event
to occur either before or after some internal events. The above
two types of non-deterministic bugs can be reliably reproduced by
controlling the execution order of the involved non-deterministic
events. 4 bugs require the use of non-deterministic APIs, such as
the List API, which cannot ensure the same result order across
multiple calls by default. These bugs can be triggered by repeatedly
executing their input events.

Finding 7: 86% of operator bugs can be triggered deterministically
by executing a sequence of input events in a certain order.
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Table 3: Fix Complexity

25th 75th

. Median . Max
percentile percentile
# of days to confirm | 0 1 6 673
# of days to fix 1 7 25 395
# of changed files 1 2 4 21
LOC of patch 9 34 92 2091

6 Bug Impacts

To better understand how severe operator bugs are, we study their
failure symptoms. We classify the studied operator bugs into five
categories.

Operator outage. Kubernetes can automatically restart the
crashed operator pod to mitigate unexpected operator crashes.
However, 31 bugs cause operators to repeatedly crash and restart,
resulting in the operators becoming unavailable.

Operator malfunction. 42 bugs cause operators to stop serving
certain operation requests. For example, K8S/CassOp#315 causes
the operator to fail to decommission nodes or perform a rolling
restart. Note that 5% of bugs lead to silent operator malfunctions,
that is, they do not report explicit errors, such as bugs caused by
no observation of resource changes.

Explicit system errors. 34 bugs can cause reconciliation to
fail, while also producing explicit system errors, e.g., node crashes,
hangs, and error messages in execution logs. For example, PC-
NA/MDBOp#565 can cause the cluster to get stuck in the initializing
state. In FDBOp#1185, the operator fails to create the Deployment
resource and throws an error.

Unstable state. 10 bugs cause the managed cluster to constantly
switch between different states, but no errors are reported explicitly,
e.g., NifiOp#119 caused by reconciliation loop.

Undesired state. 93 bugs cause the manged cluster to ultimately
reach an undesired state without reporting any errors. For example,
PCNA/MDBOp#336 causes the status of the CR to be inconsistent
with the cluster status.

To avoid double-counting, each bug is assigned to the first appli-
cable category according to the impact classification order shown
above. Overall, 54% of operator bugs only lead to silent failure
symptoms, i.e., unstable state, undesired state and silent operator
malfunction.

Finding 8: Operator bugs can impact both operators and the man-
aged cluster. 54% of operator bugs only lead to silent failures, i.e.,
unstable state, undesired state and silent operator malfunction.

7 Bug Fixing
We study the complexity of operator bug fixing and how developers
fix these bugs.

Fix complexity. We measure the fixing complexity with four
metrics. (1) The number of days to confirm a bug. (2) The number
of days to fix a bug. (3) The number of changed files. (4) The lines
of code changed in the fixing patch. We show the results in Table 3.
On average, operator bugs take 13 days to confirm, 28 days to fix,
and involve 3 changed files, 97 lines of code.
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Fix strategy. The fixes for operator bugs are tailored to their
specific root causes and the underlying operators. For operator
bugs caused by incorrect access control configuration, they are
fixed by granting appropriate permissions to operators, e.g., CMT/-
CassOp#30 discussed in Section 4.1. Bugs caused by incorrect CRD
are fixed by modifying the corresponding CRD specification or
modifying the validation logic in the operator code, e.g., KubeLo-
gOp#1002 and TerraformOp#18. For bugs caused by incorrect state
observation and analysis, developers can fix them by registering
event listeners on their concerned resource types or modifying the
state analysis and reconciliation logic, e.g., retrieving the correct
resource state for comparison in bug VMOp#222.

Operator bugs caused by incorrect reconciliation typically re-
quire fixing the related state analysis and reconciliation logic. Specif-
ically, bugs caused by no synchronization of resource operations
or incorrect order of resource operations can be fixed by adding
synchronization mechanisms or adjusting the order of resource op-
erations. For example, for IST/CassOp#398 discussed in Section 4.4,
it was fixed by adding a finalizer for each Cassandra pod to ensure
that a pod is only removed after its corresponding PVC resource
has been deleted. Kubernetes ensures that a Kubernetes object can
only be deleted after the finalizer that is associated with the object
has been removed.

Finding 9: The fix for operator bugs highly depends on the root
causes and the underlying operators. Certain operator bugs, e.g.,
bugs caused by no synchronization of resource operations, can be
fixed by a small set of strategies.

8 Detection Capability of Existing Approaches

We investigate the effectiveness of the-state-of-the-art operator/-
controller testing approaches, Sieve [62] and Acto [41], in detecting
operator bugs. Our study covers 210 operator bugs across 36 Kuber-
netes operator projects and multiple Kubernetes versions. Directly
running these two tools to assess their detection capability for the
studied bugs poses significant challenges. It would involve substan-
tial efforts in setting up the necessary environments and require
a massive amount of testing time. Therefore, we have chosen to
theoretically analyze the maximum detection capability of existing
approaches for the operator bugs we studied.

Sieve [62] can automatically test the reliability of operators by
perturbing the operator’s view of the current cluster state. It de-
pends on user-provided test workloads to drive the target operator,
collects reference traces in the absence of faults, and then gener-
ates test plans to perturb the operator’s view of the current cluster
state based on the traces and predefined fault injection rules. Sieve
detects bugs by checking obvious failure symptoms such as crashes
and error messages, and by comparing cluster states between the
fault-free and faulty runs. Since Sieve relies on specific fault condi-
tions (i.e., node crash, network delay and network disconnection)
to detect operator bugs, we only assess its detection capability for
fault-related operator bugs. If an operator bug requires fault scenar-
ios not supported by Sieve’s fault injection rules, e.g., pod crashes,
we consider that Sieve cannot detect the bug.
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Acto [41] tests the correctness of Kubernetes operators by gen-
erating a sequence of desired cluster state declarations. Acto pre-
defines some representative operation scenarios based on property
semantics and property data types. Then Acto tries to generate
syntactically valid and semantically meaningful desired state decla-
rations, to cover all exposed properties in the CRD and pre-defined
representative operation scenarios. Acto detects bugs by check-
ing explicit failure symptoms, mismatches between the reconciled
system state and the declared desired state, and inconsistencies
between different state transitions to the same end states. If an
operator bug satisfies one of the following conditions, Acto cannot
detect it. (1) The bug requires faults. (2) The bug requires operation
scenarios beyond the representative ones defined by Acto, e.g., oper-
ation requests across multiple resources, resource creation/deletion
request, changing properties that are not exposed in the CRD. (3)
The bug causes failure symptoms that cannot be covered by Acto’s
test oracles, e.g., domain-specific failures.

We investigate all 210 operator bugs, and check whether they
satisfy Sieve and Acto’s preconditions. We find that for the 20 fault-
related operator bugs, 18 bugs satisfy Sieve’s preconditions, and
can be detected by Sieve. 98 bugs satisfy Acto’s preconditions, and
can be detected by Acto. In theory, the combination of Acto and
Sieve can detect 116 operator bugs. However, we should note that
Acto cannot cover all possible system states and transitions. Acto
also uses a randomized approach to explore the combinations of
changes in different properties. Additionally, Acto and Sieve do not
control the execution order of non-deterministic internal events.
This makes existing approaches inefficient in generating operation
scenarios that can trigger bugs, as well as detecting nondeterminis-
tic operator bugs.

Finding 10: 55% of operator bugs can be detected by existing
operator/controller testing approaches.

9 Lessons Learned

In this section, we discuss lessons learned, implications to exist-
ing approaches and opportunities for new research in combating
Kubernetes operator bugs. As the first empirical study on Kuber-
netes operator bugs, we believe that our findings can help operator
developers and researchers to improve operators’ reliability.

9.1 Operator Bug Detection and Fixing

Operator bugs can cause severe consequences, impacting both the
operator and the managed application (Finding 8). Resolving op-
erator bugs is of great significance for improving the reliability of
cloud applications. Our study reveals that operator bugs can be
summarized into 4 kinds of bug patterns, i.e., incorrect access con-
trol configuration (Finding 1), incorrect custom resource definition
(Finding 2), incorrect state observation and analysis (Finding 3),
and incorrect reconciliation (Finding 4). These bug patterns shed
new light and guidance on operator bug detection.
Permission-guided bug detection. To perform reconciliation
actions on Kubernetes resources, operators should be authorized
with proper permissions. Finding 1 implies that incorrect access
control configuration for operators can introduce operator bugs.
This suggests that it is possible to detect operator bugs by analyzing
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the components related to permissions in the operator. The key
challenge is to analyze the permissions necessary for operator
reconciliation and examine whether the actual permissions granted
to the operator are appropriate and sufficient for it to properly
operate on the necessary resources.

Specification-guided bug detection. Correct operators must
not violate various specification, e.g., the specification of custom
resource definition and the specification of Kubernetes platform.
Finding 2 and Finding 4 imply that specification violation can in-
troduce operator bugs. We can summarize specification violation
rules, and detect these bugs based on the rules.

Resource-dependency-guided bug detection. In an appli-
cation cluster, Kubernetes resources may have dependencies, and
operations on these resources should be synchronized and executed
in a certain order. Finding 4 implies that no synchronization of re-
source operations and incorrect order of resource operations can
introduce operator bugs. It is necessary for us to build a knowledge
graph regarding the dependencies of Kubernetes resources and
establish rules for resource operations. Based on the knowledge
graph and rules, we can effectively detect operator bugs.

Control-loop-guided bug detection. Kubernetes operators
follow the Kubernetes control loop principle. An operator runs as
an infinite loop that continuously observing, analyzing and rec-
onciling the state of the managed cluster. The preceding steps in
this process will impact the execution of subsequent steps. Find-
ing 3 and Finding 4 show that operator bugs can be caused by
no observation of state changes, no analysis of state changes, and
reconciliation loop where reconciliation actions trigger new state
changes and another round of reconciliation. This indicates that we
can detect bugs caused by the lack of certain control loop steps and
bugs caused by incorrect read-write patterns through the analysis
of the operator code.

Operator bug fixing. Finding 9 shows that the fixes for operator
bugs are highly upon their root causes and the underlying oper-
ator. However, operator bugs introduced by certain root causes,
e.g., incorrect CRD, no observation of resource changes and no
synchronization of resource operations, are fixed by a small set
of strategies with a few lines of code. This finding implies unique
research opportunities for automated fixing of operator bugs.

9.2 Operator Testing

Workload generation. A well-designed operator workload gener-
ation approach can greatly improve the effectiveness of exposing
operator bugs. This involves generating a sequence of operation
requests. Each operation request can declare a new desired state
aimed at a single resource by changing the value of one or more
properties in the current state. A workload may contain changes
on multiple resources, which may trigger the execution of multiple
operators and built-in controllers. Even though Acto can generate
representative operation scenarios [41], it is incomplete and can
miss bugs (Finding 10). We need to generate workloads that support
more features, such as modifications to multiple resources. Find-
ing 7 shows that most operator bugs can be triggered by no more
than 3 operation requests and no more than 3 property changes.
This indicates that operator bugs usually follow the small scope
hypothesis, and can be effectively detected with small workloads.
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State space exploration. Validating the correctness of operators
is extremely challenging due to the enormous system state space
resulting from the combination of all possible cluster states, all pos-
sible declarations of desired state, and all possible interleavings of
non-deterministic events, including operation requests, faults, and
internal system events. Existing approaches explore representative
operation scenarios [41] and representative fault scenarios [62] sep-
arately, which cannot systematically explore the entire state space
and thus fail to comprehensively detect operator bugs (Finding 10).
Further more, Acto [41] uses a randomized approach to explore
the combinations of changes in different properties. We need to
consider the combination of multiple factors that affect operator
behaviors, and work out more effective strategies for effectively
exploring the system state space.

Oracle design. Finding 8 shows that 54% of operator bugs causes
implicit failure symptoms, e.g., unstable state and undesired state.
To detect these bugs, we need to design more effective oracles. Test
oracles adopted by exist testing approaches [41, 62] can effectively
capture a lot of operator bugs. However, Finding 10 shows that
exist approaches can overlook certain failure symptoms, and fail to
detect certain bugs. This indicates that researchers need to develop
new test oracles to reveal such silent operator bugs.

The reconciliation logic of operators can be complicated. A single
operator can coordinate multiple steps and collaborate with multi-
ple built-in Kubernetes controllers, leading to intricate interactions
and potential conflicts. This easily leads to operator developers
introducing various problems during the coding process. Fortu-
nately, operator programs follow the control loop principle and
specific resource operation rules. This provides an opportunity for
us to propose new approaches to assist developers in generating
operator programs. These approaches can help simplify the coding
process, improve code quality, and enhance the overall effectiveness
of operators.

10 Related Work

We introduce related works that we have not discussed yet.

Empirical bug studies. Barletta et al. [29] performed a qualita-
tive field failure data analysis of 81 real-world Kubernetes incidents
reported in online sources. They analyze how Kubernetes fails by
building a Fault-Error-Failure dependency chain for Kubernetes.
Hassan et al. [44] conduct a qualitative analysis with 5,110 state
reconciliation defects mined from Ansible orchestrator. Ansible or-
chestrator and Kubernetes operator both uses state reconciliation to
maintain the consistency between the desired state and actual state.
However, Ansible orchestrator focuses on managing infrastructure
state through executing a series of tasks, while Kubernetes opera-
tors take a more declarative approach to manage custom resources
and their relationships within a Kubernetes cluster.

There are also some empirical studies for other specific types of
bugs, e.g., concurrency bugs [52, 68], fault related bugs in distributed
systems [27, 28, 36, 38], exception-related bugs [30], bugs in deep
learning systems [32, 42], bugs in database systems [35], bugs in
cloud systems [43] and so on. We adopt similar study methodologies
to existing studies in the process of bug selection, bug analysis, and
bug categorization. To the best of our knowledge, our work is the
first comprehensive study on Kubernetes operator bugs.
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Kubernetes controller verification. Sun et al. [63] formalize
a general property called eventually stable reconciliation (ESR)
for controller correctness. Then they propose a framework called
Anvil for developing controllers implemented in Rust and verifying
that the controller implementation satisfies ESR for all executions.
Kivi [54] models the high-level logic of Kubernetes controllers, and
verifies whether controllers in a specific deployment can violate a
set of user-provided properties by exhaustively model checking the
interactions among controllers and events at the model level.

Different from previous discussed automated testing approaches
[41, 62] in Section 8, those verification approaches aim to ensure the
correctness of Kubernetes controllers with respect to one or more
properties at the model or implementation level. They can preclude
bugs before deploying controllers and uncover issues that can be
missed by existing testing approaches. However, these verification
approaches typically require more manual efforts, e.g., developer-
provided proofs tailored for individual controllers.

Distributed system testing and bug detection. A lot of ap-
proaches, e.g., fuzzing approaches [39, 59], model-based testing
approaches [37, 45, 53], implementation-level model checkers [51,
58, 61, 71, 72], model checking guided testing approaches [37, 65,
67, 73], and pattern-based bug detection approaches [31, 40, 55-57]
have been proposed to test distributed systems and detect specific
distributed system bugs. These approaches can be generalized to
Kubernetes operator/controller. However, we must consider the
characteristics of the operator and operator bugs to improve the
effectiveness of these approaches in detecting operator bugs.

11 Conclusion

The complex, dynamic, and distributed nature of the overall system
makes Kubernetes operators prone to operator bugs, which can lead
to severe consequences. We conduct the first comprehensive study
on 210 Kubernetes operator bugs from 36 open-source operator
projects. We obtain many interesting findings and lessons with
respect to bug root causes, manifestations, impacts and fixes. We
hope our study can inspire more actions from diverse researchers
in the areas of operator reliability.

12 Data Availability
The dataset of our paper is publicly available at Zenodo [26].
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