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ABSTRACT
Distributed systems are expected to correctly recover from various
faults, e.g., node crash / reboot and network disconnection / recon-
nection. However, faults that occur under special timing can trigger
fault recovery bugs that are rooted in incorrect fault recovery pro-
tocols and implementations. Existing random and brute-force fault
injection approaches are not effective in revealing fault recovery
bugs due to the combinatorial explosion of multiple faults in dis-
tributed systems.

In this paper, we propose FaultFuzz, a coverage guided fault in-
jection approach that can systematically and effectively test fault
recovery behaviors in distributed systems. Based on runtime feed-
backs collected from distributed system testing, e.g., code coverage
and I/O information, FaultFuzz generates possible combinations of
faults, and preferentially selects the combinations that are more
likely to trigger new fault recovery behaviors and reveal new fault
recovery bugs. We have applied FaultFuzz on three widely-used
distributed systems, i.e., Zookeeper, HDFS and HBase and found 5
bugs in them. A video demonstration of FaultFuzz is available at
https://youtu.be/SMw1ZF1vyXw.
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Figure 1: An illustrative fault recovery bug. 𝑟𝑒𝑎𝑑 and 𝑤𝑟𝑖𝑡𝑒

denote I/O operations that read / write data from / to disk or
network. 𝑂𝐴1 denotes the first I/O operation on node 𝐴. ℎ𝑏
denotes heartbeat. FP denotes a fault point.
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1 INTRODUCTION
Nowadays, distributed systems [2–4, 6] have been widely-used
in many domains, e.g., finance and e-commerce. Large-scale dis-
tributed systems usually consist of thousands of nodes that can
suffer from various faults at any time [9, 11, 18], e.g., node crash
/ reboot and network disconnection / reconnection. Distributed
systems adopt complex fault recovery protocols to recover from
these faults. However, incorrect fault recovery protocols and im-
plementations can introduce fault recovery bugs, and affect the
reliability and availability of distributed systems.

We use the illustrative example in Figure 1 to explain how a
distributed system handles the faults and how a fault recovery bug
is triggered. There are one leader node 𝐿, and two worker nodes 𝐴
and 𝐵. Node 𝐴 and 𝐵 maintain connections with node 𝐿 through
heartbeat messages, e.g., 𝑂𝐴1 → 𝑂𝐿1 and 𝑂𝐵1 → 𝑂𝐿2. When a
client submits a task (i.e., 𝑂𝐿5), node 𝐿 assigns the task to node
𝐴 (i.e., 𝑂𝐿6 → 𝑂𝐴3). However, node 𝐴 crashes after receiving the
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task, thus all in-memory states of𝐴 disappear immediately, and the
corresponding recovery procedure is triggered. During recovery,
node 𝐿 reassigns the task to node 𝐵 (i.e., 𝑂𝐿7 → 𝑂𝐵3). However, 𝐵
also crashes after receiving the task. In this case, node 𝐿 suspends
the task since no worker is available, and writes a warning into
the disk (i.e., 𝑂𝐿8). After that, node 𝐵 reboots. Although node 𝐵 is
available now, node 𝐿 does not try to reassign the task to 𝐵 again,
and finally makes the task orphaned.

It is challenging to test the correctness of fault recovery in dis-
tributed systems through systematically exercising all possible fault
scenarios, i.e., all possible combinations of multiple faults. For exam-
ple, in Figure 1, we can only observe the first 11 I/O points without
injecting any faults, i.e.,𝑂𝐴1 to𝑂𝐴3 on node𝐴,𝑂𝐿1 to𝑂𝐿5 on node
𝐿 and 𝑂𝐵1 to 𝑂𝐵2 on node 𝐵. If we inject only one node crash on
these 11 I/O points, we can generate 11 fault scenarios. If we inject
two node crashes on these 11 I/O points from two different nodes,
we can produce (3*6 + 3*2 + 6*2) = 36 fault scenarios. If we further
consider injecting more faults (e.g., node reboot) on real-world dis-
tributed systems that contain thousands of nodes and I/O points,
the number of possible fault scenarios will increase quickly.

Some fault injection approaches have been proposed to detect
fault recovery bugs in distributed systems. Random fault injec-
tion approaches [5, 7, 24] can miss corner case bugs. Brute-force
fault injection approaches [14, 15] exhaustively exercise all possible
fault scenarios. Implementation-level model checkers [17, 23, 27]
and model-based testing [16, 26] for distributed systems can sys-
tematically explore all possible orders of non-deterministic events
including faults. They all suffer from the state space explosion prob-
lem, and are not effective in exploring the huge fault scenario space
in distributed systems. Some approaches only focus on special fault
scenarios [10, 13, 20, 22], and cannot be used to systematically test
distributed systems. Some distributed system testing approaches
[19, 21, 25] cannot be used to explore the fault scenarios.

We observe that some fault scenarios may result in the same
recovery behaviors. For example, a crash after𝑂𝐴1 and a crash after
𝑂𝐴2 (these two I/O operations send heartbeat messages, and do not
change system states) can cause similar crash states and trigger
the same recovery behaviors, i.e., node 𝐿 removes the dead node 𝐴
from its alive node list. This observation inspires us to propose a
smarter fault injection approach for distributed systems.

In this paper, we propose a coverage guided fault injection tool
FaultFuzz based on our previous work [12], which can automatically
perform fault injection testing for distributed systems. FaultFuzz
represents various fault scenarios as fault sequences, and takes a
fault sequence as a special system input to indicate where and when
to inject faults. During the system runs, FaultFuzz collects system
runtime feedbacks, e.g., I/O and coverage information. Based on
these collected information, FaultFuzz generates and mutates new
fault sequences. FaultFuzz incorporates an effective fault scenario
space exploration strategy to preferentially test the fault sequences
that are prone to increase code coverage and trigger new fault recov-
ery bugs. In this way, FaultFuzz can systematically and effectively
explore the huge fault scenario space in distributed systems.

We extend our previous work [12] in several aspects, and support
more features in FaultFuzz. First, FaultFuzz can support more fault
types, i.e., network disconnection and reconnection, and users can
flexibly specify their concerned fault types. Second, FaultFuzz can
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Figure 2: FaultFuzz overview.

support multiple workloads to drive the test, which can facilitate
fault scenario space exploration and bug discovery. Third, FaultFuzz
can also support manual annotation of the target distributed system
to indicate which application-level I/O points are interesting and
should be taken as potential fault injection points. In this way,
FaultFuzz can be easily applied to a new distributed system. Finally,
FaultFuzz can control more non-determinism among the collected
events. Therefore, we can more faithfully reproduce fault sequences
during system testing. FaultFuzz has been made publicly available
at https://github.com/tcse-iscas/FaultFuzz.

2 FAULTFUZZ
Figure 2 shows the overview of FaultFuzz, which contains the fron-
tend, the backend and the system under test (SUT). The frontend
provides a web interface and data visualizations for users to config-
ure FaultFuzz, control the testing process, and view runtime test
result statistics. The backend is responsible for our core testing logic,
including fault sequence generation and mutation, fault sequence
selection, and fault injection testing. The SUT is instrumented to
collect system runtime information for fault sequence generation
and system execution control.

The main testing process contains the following four steps:
• Information collection: FaultFuzz collects system runtime
feedbacks, e.g., I/O and code coverage information, by instru-
menting the target distributed system.

• Fault sequence generation and mutation: Based on the col-
lected information, FaultFuzz generates and mutates new fault
sequences, and puts them in a pool.

• Fault sequence selection: FaultFuzz preferentially selects fault
sequences that are prone to increase code coverage and trigger
new fault recovery bugs from the fault sequence pool.

• Fault injection testing: FaultFuzz utilizes a workload to drive
the test, injects faults to SUT according to the selected fault se-
quence, and uses predefined checkers to detect failure symptoms
(e.g., unexpected node downtime) and find bugs.
Without user intervention, FaultFuzz iteratively executes the

above four steps until the testing time budget is exhausted or there
is no fault sequence to be tested in the fault sequence pool. Note

https://github.com/tcse-iscas/FaultFuzz
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that at the beginning, the fault sequence pool is empty, and we
do not have any information that can be used to generate fault
sequences. Therefore, FaultFuzz will first run all given workloads
separately on SUT without injecting any faults.

2.1 Information Collection
During a system run, FaultFuzz mainly collects two types of infor-
mation, i.e., coverage and I/O information, by instrumenting the
target system through ASM [1].

For coverage information, we use a 64KB byte array to store
code coverage information. Each byte in the array corresponds to
a basic code block (i.e., a straight-line code sequence with only
one entry point and one exit). When a code block is executed, the
corresponding byte in the array will be marked as covered.

For I/O information, FaultFuzz can intercept all executed disk and
network I/O points at JRE level by instrumenting specific Java APIs,
e.g., write APIs in FileOutputStream and SocketOutputStream.
FaultFuzz can also intercept I/O points at application level through
automatically instrumenting SUT according to the @𝑖𝑛 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 an-
notations that are specified by developers in SUT code. For example,
for ZooKeeper, we can annotate serialize / deserialize APIs in class
Record which are used for all socket messages in ZooKeeper. We
can also directly add calls to the TriggerAndRecord function in SUT
code. To reduce manual annotation efforts, FaultFuzz has supported
automatic instrumentation for Zookeeper, HBase and HDFS to in-
tercept application-level I/O points.

When an I/O point is encountered, FaultFuzz records its cor-
responding I/O information, including (1) the call stack of an I/O
point, (2) the node ID that an I/O point occurs on, (3) the timestamp
when an I/O point is executed, (4) destination, which refers to the
file path for a disk I/O, or the connected node ID for a network I/O.

2.2 Fault Sequence Generation and Mutation
After a system run, if code coverage is increased, or the last fault
injected in this run is node crash or network disconnection (if we
inject a corresponding node reboot or network reconnection, the
code coverage could increase), FaultFuzz will generate and mutate
fault sequences based on the collected runtime information, and
add them to the fault sequence pool.

We take I/O points as potential fault injection points, and sort
all the I/O points executed in a system run according to their times-
tamps and obtain a fault sequence. Each fault sequence corresponds
to a specific workload that drives SUT. Each I/O point in a fault
sequence corresponds to a fault that occurred on the I/O point.
FaultFuzz uses fault type (i.e., node crash / reboot and network
disconnection / reconnection) and nodes affected by the fault (e.g.,
the node where the node crash fault occurs) to determine what
fault is injected on an I/O point. We leave fault type empty if we
do not inject any fault on an I/O point. In Figure 1, we can obtain a
fault sequence containing 16 I/O points from three nodes, which
corresponds to a workload for submitting a task to leader 𝐿. In the
sequence, three I/O points𝑂𝐴3,𝑂𝐵3 and𝑂𝐿8 correspond to a crash
on node 𝐴, a crash on node 𝐵 and a reboot on node 𝐵, respectively.

For a generated fault sequence 𝑠𝑒𝑞, we mutate it to generate a
group of new fault sequences by adding only one feasible fault after
the last fault in 𝑠𝑒𝑞. The newly injected fault should satisfy some

constraints, e.g., only alive nodes can crash, the number of dead
nodes should not exceed the maximum number of dead nodes that
the target system can tolerate, etc. Therefore, we can generate valid
fault sequences that can be executed by the distributed system.

2.3 Fault Sequence Selection
To effectively explore the fault scenario space in a distributed sys-
tem, FaultFuzz tries to test fault sequences that are prone to cover
new codes and trigger new bugs first. Specifically, FaultFuzz focuses
on the last fault 𝑙𝑎𝑠𝑡𝐹𝑎𝑢𝑙𝑡 in a fault sequence 𝑠𝑒𝑞. If 𝑙𝑎𝑠𝑡𝐹𝑎𝑢𝑙𝑡 is sim-
ilar to a tested fault, we will test 𝑠𝑒𝑞 as late as possible. If 𝑙𝑎𝑠𝑡𝐹𝑎𝑢𝑙𝑡
occurs during recovery, we will test 𝑠𝑒𝑞 as early as possible. To
accelerate the testing process, we also increase testing priorities
of the fault sequences that have shorter execution time and larger
code coverage. And we try to test fault sequences with multiple
faults earlier, as well as avoid testing sequences that contain too
many faults, e.g., fault sequences with more than 6 faults.

2.4 Fault Injection Testing
Based on a fault sequence 𝑠𝑒𝑞, FaultFuzz runs the target system
with its corresponding workload again, intercepts every concerned
I/O point, collects corresponding I/O information, sends the infor-
mation to the test controller and waits for controller’s decision to
continue execution or inject a fault. On the controller side, Fault-
Fuzz compares the reported I/O points with the I/O points in 𝑠𝑒𝑞,
controls the reported I/O points to be executed in the order of the
I/O points in 𝑠𝑒𝑞 as much as possible, and injects faults on the
reported I/O points according to 𝑠𝑒𝑞. For example, for the fault
sequence shown in Figure 1, FaultFuzz will block 𝑂𝐴3 until all 10
I/O points before it have been executed, and then crashes node 𝐴
after 𝑂𝐴3. If an I/O point in 𝑠𝑒𝑞 has not appeared for a long time,
we will resume all the blocked I/O points, and only check whether
the I/O points for the following faults can be observed. If an I/O
point that injects a fault cannot be observed, we will give up this
test and put 𝑠𝑒𝑞 back to the pool.

3 IMPLEMENTATION AND EVALUATION
We implement the frontend of FaultFuzz using Appsmith [8]. The
backend of FaultFuzz includes a web server implemented with
SpringBoot and a test controller. The observer of FaultFuzz is a
Java agent running on SUT that dynamically instruments the tar-
get system through ASM. All the components in FaultFuzz are
implemented in around 12,000 lines of Java code in total.

Pause and continue testing. Since the fault scenario space in a
distributed system is usually huge and the total testing time can be
long, FaultFuzz provides the pause and continue testing capabilities
to achieve flexible testing. Before testing a fault sequence, FaultFuzz
checks whether it has been paused. If so, FaultFuzz saves the current
testing state into disk, e.g., the fault sequences that have been tested
and are waiting to be tested, and any intermediate state required
to explore the remaining fault scenario space. When FaultFuzz is
resumed, it can continue from this state.

Bug reports. FaultFuzz provides detailed bug reports to help
developers understand how bugs occur, including the workload
and the fault sequence that triggers the bug, the failure symptoms,
and the execution logs of the target system and FaultFuzz. With
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Figure 3: A screenshot of FaultFuzz.

these detailed bug reports, developers can pinpoint the root cause
of a bug and figure out how to fix the bug.

Evaluation. We evaluate FaultFuzz on three widely-used dis-
tributed systems, i.e., Zookeeper, HDFS and HBase. We use an in-
strumented JRE for intercepting JRE-level disk I/O points, and use
around 332, 990 and 445 lines of code for intercepting application-
level network I/O points in Zookeeper, HBase and HDFS, respec-
tively. After running each target system for 48 hours respectively,
FaultFuzz has founded 5 bugs in them.

4 DEMONSTRATION SCENARIOS
Figure 3 shows a screenshot of FaultFuzz frontend. Users can use
FaultFuzz by the following three steps.

Step 1 (FaultFuzz installation and start). Users first need to
install the backend of FaultFuzz, i.e., put the web server jar file and
test controller jar file on a host machine. Then users can start the
web server through the command “mvn spring-boot:run”.

We provide a visual frontend as a website on Appsmith cloud.
Users can go to the “Check connection” web page, enter the address
of the web server, and click the "Check connection" button (Figure 3-
1 ) to confirm that the web server has been started and the frontend
can connect to the web server.

Step 2 (Configuration).We provide a “Configuration” web page
(Figure 3- 2 ) for users to specify the configurations used to test a
target distributed system. The configurations can be divided into
four categories, i.e., “Workloads & bug checker”, “Faults & fault
injection points”, “Observer” and “Test controller”.

The “Workloads & bug checker” panel allows users to specify
the string paths of scripts used for driving SUT and confirming
bugs, e.g., the script for requesting SUT, the script for resetting
SUT to an initial state, and the script for detecting system failure
symptoms. The “Faults & fault injection points” panel allows users
to customize concerned fault sequences, such as concerned fault
types and fault injection points. The “Observer” panel allows users
to specify the information used for instrumenting the target system,
e.g., the root path for storing runtime information, the port used
by each node in SUT to communicate with the test controller. The
“Test controller” panel allows users to specify the information used
by FaultFuzz’s test controller, e.g., the testing time budget, the path
for storing test results, the IP addresses of the nodes in SUT, etc.

After entering the above configuration information, users can
click the “Generate configuration files” button to generate and
download two configuration files, which should be copied to the
server that runs the backend of FaultFuzz and nodes in SUT, respec-
tively. Finally, users need to configure the SUT to use the generated
configuration file (and our instrumented JRE if JRE-level I/O points
are selected as potential fault injection points) at startup, which
will enable dynamic instrumentation for SUT.

Step 3 (Auto-testing and test results). After finishing configu-
ration, users can go to the “Test and result” page (Figure 3- 3 ), enter
the path of the test controller jar file and the path of the configu-
ration file. Then users can start automatic fault injection testing
for SUT by clicking the “Start test” button. Users can also pause,
resume or stop the test by clicking the corresponding buttons.

FaultFuzz displays quantitative statistics of the runtime test re-
sults at the bottom of the web page, including the elapsed testing
time, the total number of detected bugs, the total number of tested
fault sequences, the total number of covered basic code blocks and
so on. If the user wants to further observe one specific bug, she can
check the corresponding detailed bug report. The user can also try
to replay a bug by entering the file path of the fault sequence that
triggers the bug and clicking the “Start replay” button.

5 CONCLUSION
We propose FaultFuzz, a coverage guided fault injection tool to sys-
tematically and effectively test if a distributed system can recover
from various fault scenarios. FaultFuzz leverages runtime feedbacks,
e.g., coverage and I/O information, to guide fault scenario gener-
ation, mutation and selection. FaultFuzz provides a user-friendly
way for developers to test complex real-world distributed systems,
and has detected 5 bugs on three widely-used distributed systems.
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