

Detecting Atomicity Violations for Event-Driven

Node.js Applications

Xiaoning Chang, Wensheng Dou*, Yu Gao, Jie Wang, Jun Wei, Tao Huang

State Key Lab of Computer Sciences, Institute of Software, Chinese Academy of Sciences

University of Chinese Academy of Sciences

Beijing, China

{changxiaoning17, wsdou, gaoyu15, wangjie12, wj, tao}@otcaix.iscas.ac.cn

Abstract—Node.js has been widely-used as an event-driven

server-side architecture. To improve performance, a task in a

Node.js application is usually divided into a group of events, which

are non-deterministically scheduled by Node.js. Developers may

assume that the group of events (named atomic event group) should

be atomically processed, without interruption. However, the ato-

micity of an atomic event group is not guaranteed by Node.js, and

thus other events may interrupt the execution of the atomic event

group, break down the atomicity and cause unexpected results.

Existing approaches mainly focus on event race among two events,

and cannot detect high-level atomicity violations among a group

of events. In this paper, we propose NodeAV, which can predic-

tively detect atomicity violations in Node.js applications based on

an execution trace. Based on happens-before relations among

events in an execution trace, we automatically identify a pair of

events that should be atomically processed, and use predefined at-

omicity violation patterns to detect atomicity violations. We have

evaluated NodeAV on real-world Node.js applications. The exper-

imental results show that NodeAV can effectively detect atomicity

violations in these Node.js applications.

Keywords—Node.js, event-driven architecture, atomicity viola-

tion, happens-before

I. INTRODUCTION

Node.js [1] is a popular event-driven framework for
developing server-side JavaScript applications. Since its birth in
2009, Node.js has caught much attention and becomes one of the
leading open-source projects, like Linux, Git and MySQL [2].
Thanks to Node.js, JavaScript has become a widely-used server-
side programming language. One evidence is that, the package
ecosystem in Node.js, npm [3], has managed 700,000 building
blocks in August 2018, which is the largest package registry so
far. Node.js has also been widely used in industry, such as
PayPal [4], LinkedIn [5], Yahoo [6] and Mozilla [7].

Node.js adopts an event-driven architecture, and provides
effective asynchronous programming model. In traditional
multithreaded programming model, a thread has to wait until an
I/O operation is completed. Thus, much time is wasted on
waiting for I/O operations and the performance may be degraded.
In Node.js, a time-consuming I/O operation, such as file read
and write, can be delegated as an asynchronous I/O operation,
which runs in the dedicated underlying threads. Once the
asynchronous I/O is completed, an I/O completion event is put
into the event loop, and will be processed later by the looper
thread (i.e., the main thread in Node.js). Therefore, the looper

thread can continue to process other events without waiting for
the I/O completion.

To avoid blocking the looper thread and thus degrading the
application performance, developers need to delegate heavy
computations and I/O operations into asynchronous operations.
Thus, a task will be separated into a group of individual events.
Since these events collaborate to finish the special task,
developers may assume that these events should be processed
consecutively, and no relevant events can interrupt their
execution. That’s said, these events should be processed all
together, or neither of them should be processed. We name such
a group of events as an atomic event group. For example, in Fig.
1, event cbImmediate first checks whether file /tmp.txt exists by
calling asynchronous I/O operation fs.exists (Line 2). When this
asynchronous I/O is done, event cbExist begins to execute and
reads file /tmp.txt by calling fs.readFile (Line 4). Developers
assume operation fs.readFile is protected by operation fs.exists.
Therefore, event cbImmediate and cbExist should be processed
all together, without interruption.

However, the event-driven architecture in Node.js does not
have an effective mechanism that helps developers guarantee the
atomicity of an atomic event group, and avoids interruption
during processing the atomic event group. Thus, other relevant
events may break the atomicity of an atomic event group. For
example, as illustrated by the dotted line in Fig. 1, event
cbTimeout can be executed between cbImmediate and cbExist.
The asynchronous I/O operation fs.readFile (Line 4) will try to
read the file that has been deleted by cbTimeout, and returns an
error. Thus, an atomicity violation occurs. Recent studies on
Node.js [8][9] have shown that atomicity violations are common,
and at least 65% of concurrency bugs in Node.js are atomicity
violations. Further, atomicity violations can cause severe
consequences, e.g., exceptions and no response.

Existing approaches on atomicity violation detection
[10][11][12][13] mainly focus on multithreaded programs.
However, Node.js atomically processes each event in the event
looper thread, and there does not exist atomicity violations

* Corresponding author

Fig. 1. A Node.js example. The APIs setImmediate and setTimeout are
used to trigger the execution of callback cbImmediate and cbTimeout.

7. setTimeout (function cbTimeout() {

8. fs.unlink(‘/tmp.txt’, …);

9. },5);

1. setImmediate (function cbImmediate() {

2. fs.exists (‘/tmp.txt’, function cbExist (exists) {

3. if (exists)

4. fs.readFile (‘/tmp.txt’, …);

5. });

6. });

among threads. For event-driven architectures, e.g., Android and
client-side JavaScript applications, researchers have proposed
many interesting approaches [14][15][16][17][18][19][20][21]
to detect event races, in which two events access to the same
resource (at least one is write), and can be processed in any order.
First, Node.js differs from these systems as they originate from
different programming paradigms and execution environments.
For example, Android mostly concerns the Android GUI model
and asynchronous tasks executed in other threads [14][15], and
client-side JavaScript applications mostly concern about the
features like DOM and AJAX [16][17], while Node.js does not
have such features. Second, atomicity violations concern a
group of events, and the atomicity intentions of developers. This
is different from event races. Thus, existing approaches cannot
apply to atomicity violation detection in Node.js applications.

In this paper, we propose NodeAV, a dynamic atomicity
violation detector for Node.js applications. After collecting the
execution trace of a Node.js application, NodeAV predictively
infers possible atomicity violations. NodeAV faces two major
challenges. (1) How can we infer the atomicity intentions of
developers? Node.js does not have any mechanism to express
the atomicity intentions of developers, and thus atomicity
intentions are usually not documented. We observe that, if two
events form an event processing chain and access the same
resource, they usually logically belong to the same task, and
should be processed together, without interruption. For example,
in Fig. 1, event cbImmediate and cbExist form an event
processing chain and access the same file /tmp.txt. Thus, we
regard them as an atomic event pair intended by developers. (2)
How can we identify interleaving events that can cause
atomicity violations? Not all interleaving events that occur
among an atomic event pair can cause atomicity violations. For
example, in Fig. 1, suppose that event cbTimeout reads file
/tmp.txt instead of deleting the file, no atomicity violation occurs
because the interleaving file reading does not affect the result of
the atomic event pair. We adapt unserializable schedules in
multithreaded programs [10] on Node.js applications and
summarize the atomicity violation patterns to detect atomicity
violations in Node.js applications.

We summarize the main contributions as follows:

• We propose a novel approach to infer atomicity intentions
among events in Node.js applications, based on happens-
before model for Node.js.

• We design an automated approach to detect atomicity
violations in Node.js applications, by identifying atomicity
violation patterns in them.

• We implement our approach as a tool NodeAV and
evaluate it on real-world Node.js applications. The
experimental results show that NodeAV can detect
atomicity violations in Node.js applications effectively.

The remainder of this paper is organized as follows. Section
II presents related background and our motivation. Section III
introduces our approach. Section IV describes implementation
details. Section V evaluates our approach experimentally.
Section VI discusses threats to validity and limitations of our
approach. Section VII and VIII discuss related work and
conclude this paper, respectively.

II. BACKGROUND AND MOTIVATION

In this section, we illustrate the event-driven programming
model in Node.js and atomicity violations occurring in a real-
world Node.js application. Then, we discuss the challenges in
detecting atomicity violations in Node.js applications.

A. Event-Driven Programming Model in Node.js

The event-driven programming model in Node.js mainly
consists of two parts: a single looper thread and a worker pool.
The looper thread fetches events from its event queues, and
executes their associated callbacks. For expensive operations,
e.g., file read, Node.js delegates them to the worker pool, and
executes them asynchronously.

Event: An event in Node.js can be generated by network
traffic (e.g., user request), timers, the completion of
asynchronous operations, and platform APIs (e.g.,
process.nextTick and setImmediate). An event is processed by
invoking its callback, which is registered associated with the
event. According to the official Node.js documents [22], events
can be categorized into five types according to their sources:
Timeout, Immediate, nextTick, promise, and IO, whose events
are generated by setTimeout(), setImmediate(),
process.nextTick(), promise, and asynchronous I/O, respectively.
Events with different types are put into their corresponding
event queues in Node.js.

Event queue: Once an event is generated, it is put into an
event queue. Node.js consists of seven event queues that hold
different types of events: timers, I/O, pending, idle, prepare,
check, and close [22]. For each event queue, its events are pro-
cessed in the order that they are enqueued. Node.js provides
mechanisms to prioritize events in different event queues. For
example, an event scheduled by process.nextTick will be pro-
cessed immediately after the current event is processed.

Looper thread: The looper thread continuously checks the
event queues, selects one event to process at a time. In Node.js,
there is only one looper thread. Thus, each event is guaranteed
to be processed atomically, without interruption. In Node.js, the
looper thread processes the above seven event queues in a
round-robin manner: when a queue has been exhausted or the
amount of the executed callbacks for a queue reaches a given
threshold, the looper thread will move on to the next queue.

Asynchronous operation: Expensive operations are
delegated to the worker pool, and executed asynchronously.
When the asynchronous operations are done, a ‘operation done’
event will be put into the event queues, and consumed later by
the looper thread. By offloading expensive operations to the
worker pool, the looper thread will not be blocked by expensive
operations.

Callback chain: To avoid blocking the looper thread, a
heavy task is usually divided into multiple steps {s1, s2, …, sn},
which are connected by intermediate events and their associated
callbacks {cb1, cb2, …, cbn}. These callbacks form a callback
chain.

B. Motivating Example

Fig. 2 shows the simplified code snippet extracted from a
real-world Node.js application, change propagation [23], which
contains an atomicity violation reported in [24].

This code snippet is used to process topic changes. In this
example, users can subscribe a topic by calling
subscribe(someTopic) and a callback cbSubscribe is registered
to process the topic changes by calling then method (Line 2).
When the topic changes, callback cbSubscribe is triggered with
the parameter message that stores the topic change information.
It copies the value of message to x.msg (Line 3) and then
registers a callback cbTimeout by setTimeout API (Line 4).
When the timer expiration event happens, callback cbTimeout is
triggered. If the value of x.msg is valid (Line 5), cbTimeout
offloads an asynchronous I/O operation to the worker pool to
write the variable x.msg to file log.txt by calling the method
writeFile (Line 6). When the file write is completed, callback
cbFs registered by fs.writeFile (Line 6) is triggered to clear the
content of x.msg (Line 7).

In this example, the processing for a topic change is divided
into three callbacks, i.e., cbSubscribe, cbTimeout and cbFs,
which forms a callback chain. For each topic change, the
execution order of cbSubscribe, cbTimeout and cbFs is
deterministic, namely cbSubscribe → cbTimeout → cbFs. The
callback chain is used to process the specific task, and the
atomicity of the callback chain should be guaranteed. For
example, cbSubscribe and cbTimeout access the shared variable
x.msg, hence they should be executed consecutively, without
interruption. Although the execution order among the events
(i.e., callbacks) in a callback chain is deterministic, the atomicity
of the callback chain is not guaranteed by Node.js. Let’s assume
that two topic changes change-1 and change-2 simultaneously
arrive. The callback chain will be executed twice, once per
request. For simplicity, we denote an execution of callback cb
for request change-x as cbx (𝑥 ∈ {1, 2}). Fig. 3a shows a correct
execution trace, in which two changes are processed one by one.

However, the two executions of change-1 and change-2 can
interleave and thus introduce atomicity violations. In the buggy

interleaving execution  in Fig. 3b cbFs1 interleaves between
cbSubscribe2 and cbTimeout2, and sets variable x.msg to
undefined. Thus, the succeeding cbTimeout2 switches to a
different branch in Line 5 and does not save the message in
change-2. Fig. 3c shows another buggy interleaving execution

, in which, cbSubscribe2 interleaves between cbSubscribe1 and
cbTimeout1, and overwrites the message in change-1 (Line 3).
Thus, the message in change-1 is lost.

C. Approach Overview

In this paper, we propose NodeAV to dynamically detect
atomicity violations in Node.js applications. We need to address
four technical challenges. (1) How can we model the contention
on external resources, e.g., the file in Fig. 1? Existing studies
[8][9] have shown that about a half of concurrency bugs in
Node.js applications contend against external resources. (2)
Node.js has various mechanisms for event-driven programming,
including several system-specific scheduling APIs, e.g.,
process.nextTick and promise [22][25]. How can we build a
precise happens-before relation among events based on an
collected execution trace? (3) The atomicity intentions of
developers are usually not documented explicitly. What events
can form an atomic event group? (4) In what situation, some
events can cause atomicity violations of atomic event groups?

For the first challenge, we summarize the file system APIs
in Node.js into basic access types, and regard each API as one
or multiple basic access types, e.g., read and write. For the
second challenge, we design happens-before model to capture
partial order among events in Node.js applications. For the third
challenge, automatically checking which events can form an
atomic event group is a hard problem, as it depends on the high-
level semantics of events involved in an application. Instead, we
only check whether two events (atomic event pair) should be
processed together without interruption (i.e., atomically). We
require that (a) the two events access the same resource (e.g.,
shared variables or files) and (b) the execution order of two
events can be determined by happens-before relations (e.g.,
callback chain in Fig. 3). For the fourth challenge, we determine
whether an atomic event pair and a related interleaving event can
be serializable. We borrow the idea from the serializability in
multithreaded programs [10], and apply atomicity violation
patterns on event-driven Node.js applications.

(a) Correct trace 1 (b) Buggy trace  (c) Buggy trace 

Fig. 3. Three execution traces for the code snippet in Fig. 2. The solid boxes represent events and the dotted boxes represent virtual events that will not

happen in the execution. The solid arrows denote the happens-before relation among events, and the dotted arrows denote the execution order. In  cbFs1

that sets variable x.msg to undefined causes the succeeding cbTimeout2 to fail. In  cbSubscribe2 that overwrites variable x.msg written by cbSubscribe1

causes the message for change-1 lost.

change-1 change-2

cbFs1

cbSubscribe2

cbTimeout2

cbFs2

cbSubscribe1

cbTimeout1

change-1 change-2

cbFs1

cbSubscribe2

cbTimeout2

cbFs2

cbSubscribe1

cbTimeout1

change-1 change-2

cbFs1

cbSubscribe2

cbTimeout2

cbFs2

cbSubscribe1

cbTimeout1

Fig. 2. Code snippet of an atomicity violation.

1. var x={msg: undefined};

2. subscribe (someTopic).then (function cbSubscribe (message) {

3. x.msg=message;

4. setTimeout (function cbTimeout () {

5. if (x.msg)

6. fs.writeFile (‘log.txt’, x.msg, function cbFs () {

7. x.msg=undefined;

8. });

9. }, 100);

10. });

III. APPROACH

Given the source code of a Node.js application and its test
suite, NodeAV detects atomicity violations in three steps. First,
it instruments the source code, and then executes the test suite
on the instrumented version to collect execution trace, including
events, read/write to variables, and so on (Section A). Second,
we design happens-before model for Node.js and build a
happens-before graph for events in the execution trace, which
reflects the partial order among events (Section B). Third, we
infer atomic event pairs based on happens-before graphs, and
detect atomicity violations based on predesigned atomicity
violation patterns (Section C).

A. Execution Trace

A Node.js application’s execution consists of a number of
events, i.e., the execution of events’ associated callbacks. Thus,
an execution trace of a Node.js application is a sequence of
operations that are performed by events in the execution.

The operations in an execution trace are listed in Fig. 4. Note
that, we only consider these operations in Fig. 4, since other
parts in Node.js applications, e.g., conditionals, loops and
expressions, are irrelevant to atomicity violation detection and
omitted for brevity.

• start(e) and end(e): The begin and end of an event e,
respectively.

• register(e, listener): Event e registers a listener, which
contains an expected event listener.event, and an
associated listener.callback. When the expected event
listener.event is triggered, listener.callback will be
executed. When registering a listener, the type of its
expected event listener.event.eType is determined. For
example, fs.readFile(‘log.txt’, cb) registers a listerner that
listens on the file read done event with the type of IO. As
discussed earlier in Section II.A, Node.js provides several
APIs to register listeners with different expected event
types, e.g., process.nextTick and setImmediate. We map
these APIs into register operations with their expected
event types.

• trigger(e, u): Event e triggers an event u so that event u is
put into the corresponding event queue, and its associated
callback will be executed. In Node.js applications,
developers can use system-specific APIs to generate
specific events, e.g., process.nextTick, setImmediate, and
function resolve in promise [25]. When an event is
triggered, it will be put into the corresponding event queue
according to its event type.

• trigger(libuv, u): Node.js underlying platform (i.e., libuv
[26]) can generate timeout events and I/O events, etc. For
example, a file read done event is triggered by libuv, and
its triggering timing is unknown. When an event is
triggered by libuv, it will be put into the related event queue
according to its event type.

• access(e, resource, type): Event e accesses to a shared
resource with a specific accessing type.

Shared resources are accessed by multiple events. In Node.js,
shared resources include variables (e.g., variable x.msg in Fig. 2)

and external resources (e.g., file ‘tmp.txt’ in Fig. 1). For each
shared resource, its accessing type can be generally abstracted
into two types: read and write. We describe accessing types for
three kinds of shared resources in the following.

• Variable. Reading variables and getting field of objects are
considered as an operation of type read. Writing variables
and putting fields of objects are considered as an operation
of type write. Specially, functions are treated as a special
kind of objects. We regard a declaration of a function f as
an operation of type write on variable f and a call of the
function f as an operation of type read on variable f.

• Native object. JavaScript predefines a large number of
native objects [27], such as Array and String. The
properties of native objects are accessed by native methods.
We study the semantics of native methods and map them
into one or multiple operations of type read and write on
native objects.

• File. We map each file system API into one or multiple
operations of type read and write on files. For instance,
fs.readFile(foo, …) is mapped into an operation of type
read on file foo and fs.copyFile(src, dest, …) is mapped
into an operation of type read on file src and an operation
of type write on file dest.

B. Happens-Before Relaion

Given an execution trace 𝜏 for a Node.js application,
happens-before relation ≺ is a partial order among events in the
execution trace. We denote event e1 happens before event e2 as
𝑒1 ≺ 𝑒2.

For brevity, we also denote an operation a happens before b
as 𝑎 ≺ 𝑏, an operation a happens before all operations in event
e as 𝑎 ≺ 𝑒 , and all operations in event e happen before an
operation a as 𝑒 ≺ 𝑎 . Here, we overload the happens-before
operator for operations and events. We present our happens-
before rules in Node.js applications as follows.

Rule 1 (Transitivity): The happens-before relation ≺ is
transitive, i.e., if 𝑒1 ≺ 𝑒2 and 𝑒2 ≺ 𝑒3, then 𝑒1 ≺ 𝑒3.

Rule 2 (Program order): If operations a and b are
performed by the same event e and a occurs before b in event e,
then 𝑎 ≺ 𝑏.

Rule 3 (Event atomicity): In Node.js, an event is processed
without interruption by the looper thread. In other words, an
event is either processed atomically or not processed. Namely,
for any operation a in event e1 and any operation b in event e2,
if a happens before b, then any operation in event e1 happens
before any operation in event e2. Formally:

if 𝑠𝑡𝑎𝑟𝑡(𝑒1) ≺ 𝑒𝑛𝑑(𝑒2), then 𝑒𝑛𝑑(𝑒1) ≺ start(𝑒2)

Trace → Operation*
Operation → start(e) | end(e) |
 register(e, listener) | trigger(e, u) | trigger (libuv, u)

 access(e, resource, type)
𝑒, 𝑢 ∈ 𝐸𝑣𝑒𝑛𝑡

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ∈ Shared variables ∪ files

𝑡𝑦𝑝𝑒 ∈ {𝑟𝑒𝑎𝑑, 𝑤𝑟𝑖𝑡𝑒}

Fig. 4. Operations in a Node.js execution trace.

Rule 4 (Event register): If event e1 performs an operation
register(e1, listener) and event e2 triggers the listener and
executes its associated callback, then 𝑒1 ≺ 𝑒2. Formally:

∀ 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑒1, 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟), if 𝑒2 = 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟. 𝑒𝑣𝑒𝑛𝑡,
then 𝑒1 ≺ 𝑒2

Rule 5 (Event trigger): If event e1 performs an operation
trigger(e1, e2) to put event e2 into its corresponding event queue,
then 𝑒1 ≺ 𝑒2. Formally:

∀ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒1, 𝑒2), 𝑒1 ≺ 𝑒2

Rule 6 (Event trigger by libuv): As discussed in Section
III.A, libuv (i.e., Node.js underlying platform) can generate
timeout events and I/O events, etc. These trigger operations
issued by libuv are non-deteministic. However, we can restrict
their happens-before relation with other operations. If event e1
performs an operation register(e1, listener) and event e2 is
triggered by libuv, and associates with the listener, then
operation register(e1, listener) happens before trigger(libuv, e2)
and trigger(libuv, e2) happens before e2. Formally:

∀ 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑒1, 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟) and 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑙𝑖𝑏𝑢𝑣, 𝑒2),
if 𝑒2 = 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟. 𝑒𝑣𝑒𝑛𝑡,

then 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑒1, 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟) ≺ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑙𝑖𝑏𝑢𝑣, 𝑒2) ≺ 𝑒2

As discussed earlier in Section II.A, events with different
types are put into different event queues, and the looper thread
processes event queues in a round-robin manner. According to
the Node.js official documents [22] and implementation, events
in different event queues have different priorities to be processed
by the looper thread. We assign priorities to events according to
event types. Basically, there are four levels of priorities.

• 0 for nextTick and promise events, triggered by
process.nextTick and promise.

• 1 for Immediate events, triggered by setImmediate.

• 2 for Timeout events, triggered by setTimeout.

• 3 for IO events, triggered by asynchronous I/O.

Rule 7 (Events with the same priority): Events in the same
event queue have the same priority, and are processed in their
enqueue order. If an operation trigger(e1, u1) happens before
another operation trigger(e2, u2) and the priority of event u1 is
the same as the priority of event u2, then 𝑢1 ≺ 𝑢2 . We use
priority(e) denotes the priority of an event e. Formally:

if 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒1, 𝑢1) ≺ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒2, 𝑢2) 𝑎𝑛𝑑 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢1)
= 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢2), 𝑡ℎ𝑒𝑛 𝑢1 ≺ 𝑢2

Rule 8 (Events with different priorities): According to the
Node.js official documents [22] and implementation, Node.js
basically adopts a round-robin manner to process events with
different priority in event queues. Therefore, Node.js does not
guarantee that an event with higher priority will be scheduled
earlier, e.g., a Timeout event may be scheduled before an
Immediate event, even the previous one has a higher priority.
The Node strategy in [28] precisely models the Node.js
scheduling: If there exist events of priority 0, then Node.js
executes all these events with priority 0 recursively; Otherwise,
for events with other priorities (i.e., 1, 2 and 3), Node.js picks
one event to execute, regardless of its priority.

Suppose that event e1 performs an operation trigger(e1, u1)
before and e2 performs an operation trigger(e2, u2), and event u1
and u2 have different priorities. There are three cases.

Case 1: event u1 is of priority 0. Formally:

if 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒1, 𝑢1) ≺ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒2, 𝑢2), 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢1) = 0
and 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢2) ≠ 0, then 𝑢1 ≺ 𝑢2

Case 2: event u2 is of priority 0. In this case, if the trigger(e2,
u2) occurs before the execution of u1, then 𝑢2 ≺ 𝑢1. Formally:

if 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒1, 𝑢1) ≺ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒2, 𝑢2), 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢1) ≠ 0,
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢2) = 0 and 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒2, 𝑢2) ≺ 𝑏𝑒𝑔𝑖𝑛(𝑢1),

then 𝑢2 ≺ 𝑢1

Case 3: Neither event u1 or u2 are of priority 0. In this case,
the happens-before relation of u1 and u2 cannot be determined.

C. Atomicity Violation Detection

In Node.js, developers usually divide a task into a group of
events, which are non-deterministically scheduled by Node.js.
Since this group of events should collaborate to finish the special
task, developers usually assume that these events are processed
consecutively without interruption. However, the atomicity of
this event group is not guaranteed by Node.js, and other events
may interrupt the execution of atomic event group, break down
the atomicity.

The key to atomicity violation detection in Node.js is to
automatically infer which events can form atomic event groups.
Developers’ atomicity intentions of events involve high-level
the semantics of the application and are not documented
explicitly. It is hard to infer these high-level atomicity intentions.
However, we have two observations which help us determine
whether some events should be executed without interruption.

• Callback chain: As discussed earlier in Section II.A, a
callback chain clearly describes how a task is performed
by a sequence of events. This usually reflects that the
events in the callback chain should not be interrupted. For
example, in Fig. 3a, event cbSubscribe1 and cbTimeout1 are
intended to be executed together to process task change-1.

• Predesigned execution order of events: The execution
orders of two or more events can be clearly designed in the
application. For example, in Fig. 5, the events triggered by
two setImmediate operations are ordered by Rule 7 in
Section III.B. Developers assume that two consecutive
events cb1 and cb2 should not be broken down.

According to the above two observations, we find that
developers usually schedule an ordered sequence of events to
deal with a task, and assume events in the ordered sequence
belong to an atomic event group. The execution order of events
can be precisely expressed by the happens-before relation in

Fig. 5. Two events with predesigned execution order.

1. var x;

2. setImmediate (function cb1 () {

3. x=1;

4. });

5. setImmediate (function cb2 () {

6. if (x==1) …

7. });

Section III.B. However, conservatively treating all events
involved into happens-before relation will result into that all
events in an execution trace are treated as an atomic event group.
It is because the start event (similar to the main function) in an
application happens before all other events in an execution. This
motivates us to design a general heuristic to infer atomic event
pairs, rather than atomic event groups.

Atomic event pair: Given event e and u, if e happens before
u, and e and u have some operations op1 and op2 that access the
same resource, then e and u forms an atomic event pair, denoted
as atomic(e, u). We use resource(op) to denote the resource that
operation op accesses. Formally, event e and u in an atomic
event pair satisfy the following two conditions.

• 𝑒 ≺ 𝑢

• ∃𝑜𝑝1 ∈ 𝑒, 𝑜𝑝2 ∈ 𝑢, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝1) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝2)

The first condition requires that events in an atomic event
group are usually ordered. The second condition indicates that if
two events do not share any resource, they can be considered as
independent events, and we do not need to force the atomicity
among them. Note that, two events that are not ordered by
happens-before relation are not treated as atomic event pair.

We further define atomicity violation as follows.

Atomicity violation: Given an atomic event pair atomic(e,
u) and another event t, if event t can interrupt into this pair, and
event e, u and t have some operations that access the same
resource, then atomic(e, u) and event t form an atomicity
violation. Formally, atomic event pair atomic(e, u) and event t
should satisfy the following three conditions. Here, 𝑒 ⊀ 𝑡
denotes event e does not happen before event t.

• 𝑒 ≺ 𝑢

• 𝑒 ⊀ 𝑡 ∧ 𝑡 ⊀ 𝑒 ∨ 𝑢 ⊀ 𝑡 ∧ 𝑡 ⊀ 𝑢

• ∃𝑜𝑝1 ∈ 𝑒, 𝑜𝑝2 ∈ 𝑢, 𝑜𝑝3 ∈ 𝑡, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝1) =
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝2) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝3)

The first condition requires that event e and u can be an
atomic event pair. The second condition indicates that event e
and t do not have happens-before relation, or event u and t does
not have happens-before relation. So, event t can happen
between event e and u. The application may run correctly when
event t happens before or after the atomic event pair. The third
condition indicates that three events share the same resource,
otherwise, they can be considered as independent events.

Fig. 6a-c shows three scenarios in which atomicity violations
can happen. In Fig. 6d, 𝑒 ≺ 𝑡 and 𝑡 ≺ 𝑢, so that event e, t and u
must be executed in the order of 𝑒 ⟶ 𝑡 ⟶ 𝑢. Note that, even

though this execution order is the same as those in atomicity
violations of Fig. 6a-c, we do not consider event e, t, and u in
Fig. 6d form an atomicity violation. It is because 𝑒 ⟶ 𝑡 ⟶ 𝑢 is
the only execution order for these three events, and should be
excepted execution order by developers.

Although three events e, t and u in Fig. 6a-c can form an
atomicity violation, they do not necessarily incur different
execution results. For example, in Fig. 7a, event e, u and t all
access the shared resource x with the type read, so the execution
result is not affected by this atomicity violation. In contrast, in
Fig. 1, atomic event pair (cbImmediate, cbExist) is interrupted
by event cbTimeout, which performs an operation of type write
on the shared file (Line 8). This atomicity violation affects the
execution result of the operation of type read in event cbExist
(Line 8). If an atomicity violation does not affect the execution
result of an application, developers do not need to fix it. Thus,
we only focus on atomicity violations which can incur different
execution results.

Inspired by existing studies on atomicity violations in
multithreaded programs [10], we borrow the idea of
serializability from multithreaded programs, and design
atomicity violation patterns based on shared resource accessing
types. Based on the atomicity violation patterns in multithreaded
program [10], for each atomicity violation scenario in Fig. 6a-c,
we design four resource accessing patterns that can cause
different execution results. Since all the three scenarios in Fig.
6a-c have the same resource accessing patterns, we only use the
atomicity violation scenario in Fig. 6a as an example. Its four
resource accessing patterns are shown as Fig. 7b-e. These four
resource accessing patterns are briefly described as follows.

• Read-Write-Read in Fig. 7b: The read in event u gets a
different value of resource x with that in event e.

• Read-Write-Read in Fig. 7c: The read in event u cannot
get the expected value of resource x written by event e.

• Write-Read-Write in Fig. 7d: The read in t gets the dirty
data of resource x, which is written by event e.

• Read-Write-Write in Fig. 7e: The write of event u depends
on the value of resource x read by event e, which is
overwritten by event t.

NodeAV monitors the executions of a Node.js application,
and predicts atomicity violations that can happen in the future
under the same input, and outputs the three events involved in
each atomicity violation. We briefly describe the NodeAV
detection algorithm as follows.

Given an execution trace of a Node.js application, we build
a happens-before graph among events based on the happens-

(a) (b) (c) (d)

Fig. 6. Subgraph a-c present three atomicity violation scenarios and subgraph d is not an atomicity violation. The solid lines denote happens-before relation

and the dotted lines denote execution order.

event e:

access(x)

event u:

access(x)

event t:

access(x)

event e:

access(x)

event u:

access(x)

event t:

access(x)

event e:

access(x)

event u:

access(x)

event t:

access(x)

event e:

access(x)

event u:

access(x)

event t:

access(x)

before rules in Section III.B, in which, nodes denote events and
edges denote happens-before relation. We construct the
atomicity violation triple <e1, e2, e3> in the following steps. (1)
For any two event e1 and e2, if 𝑒1 ≺ 𝑒2, we further check whether
e1 and e2 access the same resource. If yes, they form an atomic
event pair atomic(e1, e2). (2) We try to find an event e3 that do
not have edges with e1 or e2 in the happens-before graph. That’s
said, event e3 do not have happens-before relation with e1 or e2.
For each found e3, we form a candidate atomicity violation triple
<e1, e2, e3>. (3) For each candidate triple, we validate whether
they access the same resource in the patterns shown in Fig. 7b-
e. If one pattern matches, the candidate triple is considered as an
atomicity violation.

IV. IMPLEMENTATION

NodeAV first generates an execution trace by instrumenting
the original Node.js application, and then performs atomicity
violation detection offline on the execution trace. Here we
mainly introduce the implementation details of trace generation,
which is not described in Section III.

Node.js utilizes the async_hooks module [29], which is
introduced in Node.js 8.6, to collect event scheduling operations,
namely start(e), end(e), register(e, listener) and trigger(e, u).
async_hooks provides four APIs to track the lifetime of each
event: init, before, after and promiseResolve, which are
triggered when a callback is registered, before and after an event
and when resolve method is invoked. We use these APIs to
record all above operations. In addition, async_hooks provides
an API executionAsyncId, which returns the event that performs
a given operation.

NodeAV utilizes Jalangi [30] to collect resource accessing
operations. Jalangi interprets each instruction, such as read and
putField instructions, and provides detailed information for each
instruction, e.g., the name of a variable, and the value read from
the variable. We use Jalangi to query the instructions that we are
interested in, including read, write, putField, getField, declare,
invokeFun, etc. For an operation access(e, resource, type), we
obtain its information e by calling the method
async_hooks.executionAsyncId and record the type of operation
type. As discussed in Section III.C, we need to determine
whether the resources accessed by two operations are the same.
We use logic addresses to uniquely identify resources. We
obtain logic addresses for different types of resources as follows.

• Variable. For a variable, we use a tuple <scope, name> as
its logic address, where scope and name refer to the static
scope and the name of the variable, respectively. For an
object obj, when it is created, we allocate a unique ID objId

to it. When its property obj.prop is accessed, we use a tuple
<objId, name> to denote its logic address, where name
refers to the name of the property prop.

• File. We use the absolute path of a file as its logical address.
Jalangi provides an API invokeFunPre, which is called
before a method invocation. We use invokeFunPre to
check whether the method is a file system API. If yes, we
use our file system API model to transform the API
invocation into corresponding operations. In our file
system API model, we specify how we transform each API
into basic operations. For example, fs.copyFile(src,
dest, …) is parsed into an operation with read type on src
and an operation with write type on dest.

V. EVALUATION

We evaluate NodeAV by answering the following two
research questions:

RQ1: Can NodeAV effectively detect atomicity violations in
Node.js applications?

RQ2: How is the performance of NodeAV? Can NodeAV
scale to analyze real-world Node.js applications?

A. Experimental Subjects and Setup

We evaluate NodeAV on two datasets of real-world Node.js
atomicity violations and applications.

Dataset-1: Known atomicity violations. To verify whether
NodeAV can effectively detect known atomicity violations in
Node.js applications, we build dataset-1 based on Node.fz [9]
and NodeCB [8], which contain atomicity violations in real-
world Node.js applications. We select an atomicity violation in
Node.fz and NodeCB if it satisfies the following conditions: (1)
The application that contains the atomicity violation is able to
run on Node.js 8.6 or above, which supports the async_hooks
module used by NodeAV. (2) The atomicity violation can be
reproduced or has clear description in the bug report about how
it occurs. If we cannot reproduce the original atomicity violation
for some reasons, e.g., unavailable buggy version in
wikimedia/change-propagation, then we design a standalone
application to replicate the buggy code described in the bug
report. The last three atomicity violations in are reproduced in
Table I this way. (3) The application that contains the atomicity
violation should have test cases so that we can use them to
collect runtime traces. In case that the application does not
contain related test cases, we develop a simple test case to trigger
the actions described in the bug report. Finally, we obtain 9
atomicity violations from 8 applications, as shown in Table I.
The column Project refers to the application, the column

(a) Read-Read-Read (b) Read-Write-Read (c) Write-Write-Read (d) Write-Read-Write (e) Read-Write-Write

Fig. 7. The atomicity violation pattern in subgraph a does not affect the execution result, whereas the four atomicity violation patterns in subgraph b-e can

affect the execution result. Event e, u and t share the resource x and their accessing types are denoted in each box. Event e happens before u, denoted by the

solid line. They form an atomic event pair atomic(e, u). The dotted lines denote possible execution order.

event e:

read x

event u:

read x

event t:

read x

event e:

read x

event u:

read x

event t:

write x

event e:

write x

event u:

read x

event t:

write x

event e:

write x

event u:

write x

event t:

read x

event e:

read x

event u:

write x

event t:

write x

Description gives a brief description of each application and the
column Issue ID shows the issue ID in GitHub.

Dataset-2: Real-world Node.js applications for detecting
new atomicity violations. To evaluate whether NodeAV can
find new atomicity violations in real-world Node.js applications,
we collect 10 Node.js applications from two aspects. First, we
update the applications in dataset-1 to their newest versions. We
remove an application, if (1) it is incompatible with NodeAV, or
(2) it does not have available test suites for execution trace
collection, e.g., brave/browser-laptop, or (3) it cannot be built,
e.g., wikimedia/change-propagation and gadicc/meteor. Thus,
we obtain 5 Node.js applications from dataset-1, as shown in the
first 5 rows in Table II. Second, we collect another 5 popular
Node.js applications from GitHub, which exhibit certain
concurrent behavior, e.g., having concurrency bug issues. They
are shown in the last 5 rows in Table II. In Table II, column Star
shows the number of stargazers in GitHub. We can see that most
of our selected applications are popular.

We perform our experiments in the following steps. First, we
use NodeAV to instrument the source code of an application.
Second, we run the test cases included in the bug report or test
cases developed by us and collect execution traces. Third, we
use NodeAV to detect atomicity violations based on the
collected trace. To answer RQ1, we use NodeAV to detect

known atomicity violations on dataset-1 and find new atomicity
violations on dataset-2. To answer RQ2, we measure the runtime
overhead of NodeAV on dataset-2.

B. Atomicity Violation Detection Results (RQ1)

Detect known atomicity violations. We use dataset-1 to
evaluate NodeAV’s ability to detect known atomicity violations.
Table III shows the detection result. The column ID refers to the
ID in Table I. The column Detected indicates whether the known
atomicity violation is detected, with value Y indicating yes and
N indicating no. The column #New violation represents the
number of new atomicity violations detected by NodeAV. We
manually inspect the code to validate whether each new detected
atomicity violation is real.

As shown in Table III, NodeAV detects 7 known atomicity
violation out of 9. We further detect 8 new atomicity violations
from 3 applications. After manual inspection, we find that all
these newly detected atomicity violations are real. For example,
in project wikimedia/change-propagation, NodeAV reveals a
new buggy interleaving, which has not been found in the original
bug report. This application is the prototype of our example in
Fig. 2. The new atomicity violation happens when the second
topic change overlaps the message of the first change between
the processing of the first topic change, as shown in Fig. 3c. Note
that, for atomicity violations with ID 4 and 5, NodeAV detects
different numbers of new atomicity violations for the same
application, since we use different test cases for these two
known atomicity violations.

As shown in Table III, 2 known atomicity violations are not
detected by NodeAV, i.e., the atomicity violations with ID 5 and
6. We further investigate why NodeAV misses these two
atomicity violations. For the atomicity violation with ID 5, its
related events are not triggered in the collected trace, and thus
NodeAV cannot detect the atomicity violation from the
unexplored execution trace. For the atomicity violation with ID

TABLE II DATASET-2: APPLICATIONS UNDER DETECTION. THE PROJECTS HAVE ACCESSIBLE LINKS.

ID Project Description LoC Star

1 michaelwittig/node-logger-file File endpoint for cinovo-logger 367 2

2 substack/node-mkdir-p Similar function to mkdir -p 76 1,218

3 hapijs/nes Native WebSocket support to hapi-based application servers 1,616 146

4 telefonicaid/fiware-pep-steelskin Implementation of the FIWARE PEP GE 1,655 9

5 node-modules/agentkeepalive Support keepalive http agent 312 251

6 nickewing/line-reader Asynchronous line-by-line file reader 256 384

7 sitegui/nodejs-websocket A module for web socket server and client 726 514

8 JoshuaWise/better-sqlite3 The fastest and simplest library for SQLite3 285 1,050

9 derbyjs/racer Realtime model synchronization engine 4,312 1,098

10 simplecrawler/simplecrawler Flexible event driven crawler 285 1,847

TABLE III EXPERIMENTAL RESULT ON DATASET-1.

ID Project Detected #New violation

1 michaelwittig/node-logger-file Y 3

2 substack/node-mkdir-p Y 0

3 hapijs/nes Y 0

4 telefonicaid/fiware-pep-steelskin Y 4

5 telefonicaid/fiware-pep-steelskin N 0

6 node-modules/agentkeepalive N 0

7 wikimedia/change-propagation Y 1

8 brave/browser-laptop Y 0

9 gadicc/meteor-hmr Y 0

TABLE I DATASET-1: KNOWN ATOMICITY VIOLATIONS. THE PROJECTS HAVE ACCESSIBLE LINKS.

ID Project Description Issue ID

1 michaelwittig/node-logger-file File endpoint for cinovo-logger 1

2 substack/node-mkdir-p Similar function to mkdir -p 2

3 hapijs/nes Native WebSocket support to hapi-based application servers 18

4 telefonicaid/fiware-pep-steelskin Implementation of the FIWARE PEP GE 269

5 telefonicaid/fiware-pep-steelskin Implementation of the FIWARE PEP GE 279

6 node-modules/agentkeepalive Support keepalive http agent 23

7 wikimedia/change-propagation A REST-based queuing module for Apache Kafka 84

8 brave/browser-laptop Desktop browser for macOS, Windows, and Linux 3,273

9 gadicc/meteor-hmr Hot module replacement for meteor 71

https://github.com/michaelwittig/node-logger-file
https://github.com/substack/node-mkdirp
https://github.com/hapijs/nes
https://github.com/telefonicaid/fiware-pep-steelskin
https://github.com/node-modules/agentkeepalive/issues/23
https://github.com/nickewing/line-reader
https://github.com/sitegui/nodejs-websocket
https://github.com/JoshuaWise/better-sqlite3
https://github.com/derbyjs/racer
https://github.com/simplecrawler/simplecrawler
https://github.com/michaelwittig/node-logger-file
https://github.com/substack/node-mkdirp
https://github.com/hapijs/nes
https://github.com/telefonicaid/fiware-pep-steelskin
https://github.com/telefonicaid/fiware-pep-steelskin
https://github.com/node-modules/agentkeepalive/issues/23
https://github.com/wikimedia/change-propagation
https://github.com/brave/browser-laptop
https://github.com/gadicc/meteor-hmr

6, the accesses to the racy shared resource socket are not
captured by NodeAV. It is because we do not model the Net API
destroy() [32] in Section III.A, which destroys a socket.

Detect new atomicity violations. We use dataset-2 to
evaluate NodeAV’s ability to detect new atomicity violations.
Table IV shows the result. The column Project denotes the
applications under detection. The column #Violation represents
the number of atomicity violations detected by NodeAV. The
column #FP represents the number of false positives. We
determine whether a reported atomicity violation is a false
positive by manually reproducing it or reviewing the code.

As shown in Table IV, NodeAV detects 12 new atomicity
violations from 6 applications. We manually validate whether
these detected atomicity violations are true. Finally, we classify
the detected atomicity violations into three categories: harmful
atomicity violations, benign atomicity violations and false
positives. We discuss them as follows.

NodeAV detects 3 harmful atomicity violations, 2 in
michaelwitting/node-logger-file and 1 in telefonicaid/fiware-
pep-steelskin. For example, in michaelwittig/node-logger-file,
Event create creates a logging file, and the following event log
writes logs into the logging file. However, another event close,
which closes the logging file can occur between event create and
log. As a result, event log throws an exception and fails. We
have reported these atomicity violations on GitHub [33][34][35].

NodeAV detects 8 benign atomicity violations. Benign
atomicity violations happen in two scenarios. First, the atomicity
violation has no impact on the result. For example, the pattern
Write-Read-Write in Fig. 7d indicates that event t gets dirty data.
However, if event e and u store the same data, event t gets the
same data in all schedules. Second, the impact resulting from the
violation is expected by developers. For example, in the pattern
Write-Write-Read in Fig. 7c, if event t happens between event e
and u, the program checks that event u gets data written by event
t, and throws an exception, which may be the expected behavior.

One atomicity violation reported in telefonicaid/fiware-pep-
steelskin is false positive. NodeAV can explore an atomicity
violation 𝑒 ⟶ 𝑡 ⟶ 𝑢 , as shown Fig. 7b. However, event t
modifies the application’s state, resulting in that event u never
be triggered. Thus, NodeAV reports a false positive.

C. Performance Overhead (RQ2)

We evaluate the performance of NodeAV on dataset-2. As
shown in Table IV, the column #Event represents the number of

events that NodeAV collects. The category Time shows the
results about performance. The column Orig shows the time
running the test suites on the original application, the column
Trace shows the time running the test suites on the instrumented
application to collect execution traces. The column Analysis
shows the time for offline detection of atomicity violations
based on the collected traces. The column Total shows the total
time, calculated by Trace+Analysis.

As shown in Table II, our experimental applications are
usually huge, including thousands of lines of code. Table IV
shows that, during the trace collection, NodeAV obtained
thousands of events, e.g., more than 39,000 events in the
application telefonicaid/fiware-pep-steelskin. The column Total
shows that NodeAV can analyze all these applications in no
more than 71 seconds. The column Tracing overhead indicates
the overhead caused by NodeAV when collecting traces,
calculated by Trace/Orig. We can see that the runtime overhead
ranges from 1.1X to 5.7X. This is acceptable for a dynamic
analysis. The above results show that NodeAV can work on real-
world Node.js applications.

VI. DISCUSSION

While our experiments show that NodeAV is promising in
detecting atomicity violations in Node.js applications, we dis-
cuss potential threats and limitations in our approach.

A. Threats to Validity

Representativeness of our studied subjects. We select a
number of atomicity violations in Node.js applications in our
experiments. First, our selected atomicity violations come from
real-world Node.js applications. Second, these atomicity
violations have been used in existing studies, e.g., NodeCB [8]
and Node.fz [9]. Thus, we believe our studied atomicity
violations represent the real-world bugs. Most of our selected
Node.js applications are popular, and have lots of stars in
GitHub. We believe that these applications are representative.

B. Limitations

Supporting more Node.js versions. We utilize the
async_hooks module to trace event scheduling operations in
Node.js. The async_hooks module is only supported by Node.js
8.6 or above. For now, we cannot handle Node.js applications
that run on older Node.js versions yet. A new approach that can
analyze these applications on older Node.js versions is required.

API modeling. In our approach, we abstract each file system
API into one or multiple operations with read and write types.

TABLE IV EXPERIMENT RESULT ON DATASET-2

ID Project #Violation #FP #Event
Time (s) Tracing over-

head (X) Orig Trace Analysis Total

1 michaelwittig/node-logger-file 2 0 1,752 19.4 31.9 31.2 63.1 1.6

2 substack/node-mkdir-p 0 0 23 4.3 5.5 0.1 5.6 1.3

3 hapijs/nes 1 0 34,211 4.7 7.5 3.7 11.2 1.6

4 telefonicaid/fiware-pep-steelskin 6 1 39,757 7.3 14.4 35.4 49.8 2.0

5 node-modules/agentkeepalive 0 0 10,873 65.7 70.1 0.6 70.7 1.1

6 nickewing/line-reader 1 0 633 0.4 0.7 0.4 1.1 1.8

7 sitegui/nodejs-websocket 1 0 676 0.2 0.9 1.0 1.9 4.5

8 JoshuaWise/better-sqlite3 0 0 9,346 12.1 12.9 0.8 13.7 1.1

9 derbyjs/racer 0 0 2,065 0.2 0.5 4.0 4.5 2.5

10 simplecrawler/simplecrawler 1 0 446 4.7 26.6 0.3 26.9 5.7

That’s said, we only consider equivalent influence on the file
when calling an API but ignore the state of a file. We also treat
asynchronous I/O as synchronous operations. A more precise
model about file systems, e.g., the state machine in 2ndStrike
[36] can be integrated into NodeAV. In addition, modeling more
APIs, such as third-party database and network APIs, can also
be integrated into NodeAV, and further improves the ability of
NodeAV.

VII. RELATED WORK

To the best of our knowledge, no previous work presents (1)
a formal definition of atomicity violations, (2) a happens-before
relation and (3) an atomicity violation tool, for the event-driven
Node.js applications. The event-driven architecture has been
widely used in various software platforms, e.g., Android, client-
side and server-side JavaScript applications. Some approaches
that target concurrency bugs in these systems has been proposed.
In this section, we discuss related work that is close to ours.

Multithreaded programs. Concurrency bug detection is a
well-studied topic in multithreaded programs. Many approaches
and tools have been developed to identify concurrency bugs in
multithreaded programs, e.g., FastTrack [37], Eraser [38] for
data races, AVIO [10], CTrigger [11], and Atomizer [39] for
atomicity violations. These approaches are usually based on a
multithreaded programming model, and use multithreaded
specific happens-before relation to detect data races or atomicity
violations. The event-driven model in Node.js applications is
different from multithreaded programming model. For example,
atomicity violations in multithreaded programs concern whether
several shared variable accesses in a thread are interrupted by
another thread, while atomicity violations in event-driven
Node.js applications concern whether two consecutive events
are interrupted by another event. Therefore, our work is
orthogonal to existing studies in multithreaded programs.

Android applications. Android adopts a mixed event-
driven and multithreaded programming model. Recently, some
approaches have been proposed to detect event races in Android
applications. CAFA [14], DroidRacer [15] and EventTrack [40]
use dynamic analysis approaches to detect event races in
Android applications. They usually build happens-before
relation among events and threads based on the mixed
programming model. SIERRA [41] proposes a precise and
scalable static approach for detecting Android event races.
Node.js adopts different event-driven model from Android
applications, e.g., event queues and event scheduling. Further,
existing studies mainly concern event races, which involve two
events. While, our work mainly concerns atomicity violations
among a group of events.

Client-side JavaScript applications. Concurrency bugs in
client-side JavaScript applications have drawn researchers’
attention recently. WAVE [16], WebRacer [17] and EventRacer
[42] present the happens-before relation for client-side
JavaScript applications, and further detect races in them. The
happens-before model in client-side JavaScript applications
includes DOM, web page loading, etc. ARROW [43] further
proposes to automatically fix races in client-side JavaScript
applications. Node.js applications do not concern DOM and web
page loading that are the key elements in client-side JavaScript
applications. Further, Node.js adopts different event queue

model from client-side JavaScript applications. Thus, the above
approaches cannot be directly applied on Node.js applications.
In addition, existing studies on client-side JavaScript
applications cannot handle atomicity violations among events.

Node.js applications. The Node.js platform is relatively
new, and as a result, there is limited work on analysis tools for
Node.js applications, especially on concurrency bug detection.
NodeCB [8] studies 57 concurrency bugs in real-world Node.js
applications and obtains some interesting findings, e.g., 65% of
concurrency bugs in Node.js are atomicity violations. This study
motivates us to design an effective tool to detect atomicity
violations in Node.js. Node.fz [9] is an event fuzzing tool for
Node.js applications. It randomly shuffles the enqueue order in
the event queues, and tries to yield different schedules and
increase the possibility of race condition. While, our work
systematically validates atomicity violations based on an
execution trace. GEMs [44] presents a new parallel
programming abstraction in Node.js, which combines message
passing and shared-memory parallelism. Madsen et al. [45]
proposes a static analysis approach to build the event-based call
graph and detect bugs related to event handling, e.g., unhandled
events and listeners registered too late. Loring et al. [28]
proposes the first formalization of asynchronous execution
model in Node.js, and async-contexts to formalize relationships
between asynchronous events. The above studies are orthogonal
to ours.

As a new platform, other issues in Node.js have also drawn
researchers’ attention. Since Node.js heavily depends on event
handlers to achieve effective responsiveness, if an event handler
performs a heavy computation, then it can block the event loop,
and cause denial of service attacks [46]. Ojamaa et al. [47] argue
how the Node.js design affects the security of Node.js
applications. Synode [48] proposes a static analysis approach to
prevent injection attack.

VIII. CONCLUSION

Although each event is guaranteed to be processed
atomically, no effective mechanism in Node.js is provided to
maintain the atomicity of an atomic event group, in which the
events should be processed without interruption. This kind of
atomicity violations are common in Node.js applications and
often cause serious consequences. In this paper, we propose
NodeAV to predictively detect atomicity violations based on a
collected execution trace. We build the precise happens-before
relation for events in the execution trace, and infer events that
should be executed together without interruption. We further
propose several atomicity violation patterns in the context of
event-driven Node.js applications. We evaluate NodeAV on
real-world Node.js applications and the experimental results
show NodeAV can detect known atomicity violation, as well as
new atomicity violations.

IX. ACKNOWLEDGE

This work was partially supported by National Key R&D
Program of China (2017YFB1001804), National Natural
Science Foundation of China (61732019, 61672506, 61702490),
Frontier Science Project of Chinese Academy of Sciences
(QYZDJ-SSW-JSC036), and Youth Innovation Promotion
Association at Chinese Academy of Sciences.

REFERENCES

[1] “Node.js Foundation.” [Online]. Available: https://nodejs.org/en/.

[2] “Tracking the Explosive Growth of Open-Source Software.” [Online].
Available: https://techcrunch.com/2017/04/07/tracking-the-explosive-
growth-of-open-source-software/.

[3] “The npm Repository.” [Online]. Available: https://www.npmjs.com/.

[4] “Node.js in PayPal.” [Online]. Available: https://www.paypal-
engineering.com/2013/11/22/node-js-at-paypal/.

[5] “Node.js in LinkedIn.” [Online]. Available:
https://venturebeat.com/2011/08/16/linkedin-node/.

[6] “Node.js in Yahoo.” [Online]. Available:
https://yahooeng.tumblr.com/node.

[7] “Node.js in Mozila.” [Online]. Available: https://medium.com/mozilla-
tech/mozilla-and-node-js-33c13e29beb1.

[8] J. Wang et al., “A Comprehensive Study on Real World Concurrency
Bugs in Node.js,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2017, pp. 520–
531.

[9] J. Davis, A. Thekumparampil, and D. Lee, “Node. fz: Fuzzing the Server-
Side Event-Driven Architecture,” in Proceedings of the 12th European
Conference on Computer Systems (EuroSys), 2017, pp. 145–160.

[10] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: Detecting Atomicity
Violations via Access-Interleaving Invariants,” in Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006, pp. 37–48.

[11] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing Atomicity Violation
Bugs from Their Hiding Places,” in Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2009, pp. 25–36.

[12] B. Lucia, J. Devietti, K. Strauss, and L. Ceze, “Atom-Aid: Detecting and
Surviving Atomicity Violations,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA), 2008, pp.
277–288.

[13] G. Upadhyaya, S. P. Midkiff, and V. S. Pai, “Automatic Atomic Region
Identification in Shared Memory SPMD Programs,” in Proceedings of the
ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA), 2010, pp. 652–670.

[14] C.-H. Hsiao et al., “Race Detection for Event-Driven Mobile
Applications,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2014, pp.
326–336.

[15] P. Maiya, A. Kanade, and R. Majumdar, “Race Detection For Android
Applications,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2014, pp.
316–325.

[16] S. Hong, Y. Park, and M. Kim, “Detecting Concurrency Errors in Client-
Side Java Script Web Applications,” in Proceedings of the 17th
International Conference on Software Testing, Verification and
Validation (ICST), 2014, pp. 61–70.

[17] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby, “Race Detection for
Web Applications,” in Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2012, pp. 251–262.

[18] G. Safi, A. Shahbazian, W. G. J. Halfond, and N. Medvidovic, “Detecting
Event Anomalies in Event-Based Systems,” in Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE),
2015, pp. 25–37.

[19] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, and F. Tip, “A Framework for
Automated Testing of JavaScript Web Applications,” in Proceedings of
the 33rd International Conference on Software Engineering (ICSE), 2011,
pp. 571–580.

[20] P. Bielik, V. Raychev, and M. Vechev, “Scalable Race Detection for
Android Applications,” in Proceedings of the ACM SIGPLAN
International Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2015, pp. 332–348.

[21] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically Verifying and
Reproducing Event-Based Races in Android Apps,” in Proceedings of the

25th International Symposium on Software Testing and Analysis (ISSTA),
2016, pp. 377–388.

[22] “Seven Event Queues in Node.js.” [Online]. Available:
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/.

[23] “A Node.js Application: Change Propagation.” [Online]. Available:
https://github.com/wikimedia/change-propagation.

[24] “No.84 Issue in Change Propagation.” [Online]. Available:
https://github.com/wikimedia/change-propagation/pull/84.

[25] “Promises.” [Online]. Available: https://www.promisejs.org/.

[26] “Libuv.” [Online]. Available: https://github.com/libuv/libuv.

[27] “Standard Built-in Objects.” [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects.

[28] M. C. Loring, M. Marron, and D. Leijen, “Semantics of Asynchronous
JavaScript,” in Proceedings of the 13th ACM SIGPLAN International
Symposium on on Dynamic Languages (DLS), 2017, pp. 51–62.

[29] “Async Hooks.” [Online]. Available:
https://nodejs.org/api/async_hooks.html.

[30] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A Selective
Record-Replay and Dynamic Analysis Framework for JavaScript,” in
Proceedings of the 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2013, pp. 488–498.

[31] “Cloc: count lines of code.” [Online]. Available:
https://github.com/AlDanial/cloc.

[32] “Net - Node.js v11.7.0 Documentation.” [Online]. Available:
https://nodejs.org/api/net.html#net_socket_destroy_exception.

[33] “A race condition _log() while closing the endpoint.” [Online]. Available:
https://github.com/michaelwittig/node-logger-file/issues/5.

[34] “A race condtion logging a file while rolling a file.” [Online]. Available:
https://github.com/michaelwittig/node-logger-file/issues/4.

[35] “A race condition invalidateToken while authenticating a request.”
[Online]. Available: https://github.com/telefonicaid/fiware-pep-
steelskin/issues/412.

[36] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin, “2ndStrike: Toward
Manifesting Hidden Concurrency Typestate Bugs,” in Proceedings of the
16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011, pp. 239–250.

[37] C. Flanagan and S. N. Freund, “FastTrack: Efficient and Precise Dynamic
Race Detection,” Acm Sigplan Not., vol. 44, no. 6, pp. 121–133, 2009.

[38] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,”
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, 1997.

[39] C. Flanagan and S. N. Freund, “Atomizer: A Dynamic Atomicity Checker
for Multithreaded Programs,” in Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
2004, pp. 256–267.

[40] P. Maiya and A. Kanade, “Efficient Computation of Happens-Before
Relation for Event-Driven Programs,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2017, pp. 102–112.

[41] Y. Hu and I. Neamtiu, “Static Detection of Event-based Races in Android
Apps,” in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018, pp. 257–270.

[42] V. Raychev, M. Vechev, and M. Sridharan, “Effective Race Detection for
Event-Driven Programs,” in Proceedings of the ACM SIGPLAN
International Conference on Object Oriented Programming, Systems,
Languages, & Applications (OOPSLA), 2013, pp. 151–166.

[43] W. Wang, Y. Zheng, P. Liu, L. Xu, X. Zhang, and P. Eugster, “ARROW:
Automated Repair of Races on Client-Side Web Pages,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis
(ISSTA), 2016, pp. 201–212.

[44] D. Bonetta, L. Salucci, S. Marr, and W. Binder, “GEMs: Shared-Memory
Parallel Programming for Node.js,” in Proceedings of ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, & Applications (OOPSLA), 2016, pp. 531–547.

[45] M. Madsen, F. Tip, and O. Lhoták, “Static Analysis of Event-Driven
Node.js JavaScript Applications,” Acm Sigplan Not., vol. 50, no. 10, pp.
505–519, 2015.

[46] J. Davis, G. Kildow, and D. Lee, “The Case of the Poisoned Event
Handler: Weaknesses in the Node.js Event-Driven Architecture,” in
Proceedings of the European Workshop on Systems Security (EuroSec),
2017, pp. 1–6.

[47] A. Ojamaa and K. Düüna, “Assessing the Security of Node. js Platform,”
in Proceedings of the International Conference for Internet Technology
and Secured Transactions (ICITST), 2012, pp. 348–355.

[48] C.-A. Staicu, M. Pradel, and B. Livshits, “Understanding and
Automatically Preventing Injection Attacks on Node.js,” in Proceedings
of Network and Distributed Systems Security (NDSS), 2018.

