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Abstract—Node.js has been widely-used as an event-driven 

server-side architecture. To improve performance, a task in a 

Node.js application is usually divided into a group of events, which 

are non-deterministically scheduled by Node.js. Developers may 

assume that the group of events (named atomic event group) should 

be atomically processed, without interruption. However, the ato-

micity of an atomic event group is not guaranteed by Node.js, and 

thus other events may interrupt the execution of the atomic event 

group, break down the atomicity and cause unexpected results. 

Existing approaches mainly focus on event race among two events, 

and cannot detect high-level atomicity violations among a group 

of events. In this paper, we propose NodeAV, which can predic-

tively detect atomicity violations in Node.js applications based on 

an execution trace. Based on happens-before relations among 

events in an execution trace, we automatically identify a pair of 

events that should be atomically processed, and use predefined at-

omicity violation patterns to detect atomicity violations. We have 

evaluated NodeAV on real-world Node.js applications. The exper-

imental results show that NodeAV can effectively detect atomicity 

violations in these Node.js applications. 

Keywords—Node.js, event-driven architecture, atomicity viola-

tion, happens-before 

I. INTRODUCTION  

Node.js [1] is a popular event-driven framework for 
developing server-side JavaScript applications. Since its birth in 
2009, Node.js has caught much attention and becomes one of the 
leading open-source projects, like Linux, Git and MySQL [2]. 
Thanks to Node.js, JavaScript has become a widely-used server-
side programming language. One evidence is that, the package 
ecosystem in Node.js, npm [3], has managed 700,000 building 
blocks in August 2018, which is the largest package registry so 
far. Node.js has also been widely used in industry, such as 
PayPal [4], LinkedIn [5], Yahoo [6] and Mozilla [7]. 

Node.js adopts an event-driven architecture, and provides 
effective asynchronous programming model. In traditional 
multithreaded programming model, a thread has to wait until an 
I/O operation is completed. Thus, much time is wasted on 
waiting for I/O operations and the performance may be degraded. 
In Node.js, a time-consuming I/O operation, such as file read 
and write, can be delegated as an asynchronous I/O operation, 
which runs in the dedicated underlying threads. Once the 
asynchronous I/O is completed, an I/O completion event is put 
into the event loop, and will be processed later by the looper 
thread (i.e., the main thread in Node.js). Therefore, the looper 

thread can continue to process other events without waiting for 
the I/O completion. 

To avoid blocking the looper thread and thus degrading the 
application performance, developers need to delegate heavy 
computations and I/O operations into asynchronous operations. 
Thus, a task will be separated into a group of individual events. 
Since these events collaborate to finish the special task, 
developers may assume that these events should be processed 
consecutively, and no relevant events can interrupt their 
execution. That’s said, these events should be processed all 
together, or neither of them should be processed. We name such 
a group of events as an atomic event group. For example, in Fig. 
1, event cbImmediate first checks whether file /tmp.txt exists by 
calling asynchronous I/O operation fs.exists (Line 2). When this 
asynchronous I/O is done, event cbExist begins to execute and 
reads file /tmp.txt by calling fs.readFile (Line 4). Developers 
assume operation fs.readFile is protected by operation fs.exists. 
Therefore, event cbImmediate and cbExist should be processed 
all together, without interruption. 

However, the event-driven architecture in Node.js does not 
have an effective mechanism that helps developers guarantee the 
atomicity of an atomic event group, and avoids interruption 
during processing the atomic event group. Thus, other relevant 
events may break the atomicity of an atomic event group. For 
example, as illustrated by the dotted line in Fig. 1, event 
cbTimeout can be executed between cbImmediate and cbExist. 
The asynchronous I/O operation fs.readFile (Line 4) will try to 
read the file that has been deleted by cbTimeout, and returns an 
error. Thus, an atomicity violation occurs. Recent studies on 
Node.js [8][9] have shown that atomicity violations are common, 
and at least 65% of concurrency bugs in Node.js are atomicity 
violations. Further, atomicity violations can cause severe 
consequences, e.g., exceptions and no response. 

Existing approaches on atomicity violation detection 
[10][11][12][13] mainly focus on multithreaded programs. 
However, Node.js atomically processes each event in the event 
looper thread, and there does not exist atomicity violations 
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Fig. 1. A Node.js example. The APIs setImmediate and setTimeout are 
used to trigger the execution of callback cbImmediate and cbTimeout. 

7. setTimeout (function cbTimeout() {

8. fs.unlink(‘/tmp.txt’, …);

9. },5);

1. setImmediate (function cbImmediate() {

2. fs.exists (‘/tmp.txt’, function cbExist (exists) {

3. if (exists)

4. fs.readFile (‘/tmp.txt’, …);

5. });

6. });



among threads. For event-driven architectures, e.g., Android and 
client-side JavaScript applications, researchers have proposed 
many interesting approaches [14][15][16][17][18][19][20][21] 
to detect event races, in which two events access to the same 
resource (at least one is write), and can be processed in any order. 
First, Node.js differs from these systems as they originate from 
different programming paradigms and execution environments. 
For example, Android mostly concerns the Android GUI model 
and asynchronous tasks executed in other threads [14][15], and 
client-side JavaScript applications mostly concern about the 
features like DOM and AJAX [16][17], while Node.js does not 
have such features. Second, atomicity violations concern a 
group of events, and the atomicity intentions of developers. This 
is different from event races. Thus, existing approaches cannot 
apply to atomicity violation detection in Node.js applications. 

In this paper, we propose NodeAV, a dynamic atomicity 
violation detector for Node.js applications. After collecting the 
execution trace of a Node.js application, NodeAV predictively 
infers possible atomicity violations. NodeAV faces two major 
challenges. (1) How can we infer the atomicity intentions of 
developers? Node.js does not have any mechanism to express 
the atomicity intentions of developers, and thus atomicity 
intentions are usually not documented. We observe that, if two 
events form an event processing chain and access the same 
resource, they usually logically belong to the same task, and 
should be processed together, without interruption. For example, 
in Fig. 1, event cbImmediate and cbExist form an event 
processing chain and access the same file /tmp.txt. Thus, we 
regard them as an atomic event pair intended by developers. (2) 
How can we identify interleaving events that can cause 
atomicity violations? Not all interleaving events that occur 
among an atomic event pair can cause atomicity violations. For 
example, in Fig. 1, suppose that event cbTimeout reads file 
/tmp.txt instead of deleting the file, no atomicity violation occurs 
because the interleaving file reading does not affect the result of 
the atomic event pair. We adapt unserializable schedules in 
multithreaded programs [10] on Node.js applications and 
summarize the atomicity violation patterns to detect atomicity 
violations in Node.js applications. 

We summarize the main contributions as follows: 

• We propose a novel approach to infer atomicity intentions 
among events in Node.js applications, based on happens-
before model for Node.js. 

• We design an automated approach to detect atomicity 
violations in Node.js applications, by identifying atomicity 
violation patterns in them. 

• We implement our approach as a tool NodeAV and 
evaluate it on real-world Node.js applications. The 
experimental results show that NodeAV can detect 
atomicity violations in Node.js applications effectively. 

The remainder of this paper is organized as follows. Section 
II presents related background and our motivation. Section III 
introduces our approach. Section IV describes implementation 
details. Section V evaluates our approach experimentally. 
Section VI discusses threats to validity and limitations of our 
approach. Section VII and VIII discuss related work and 
conclude this paper, respectively. 

II.  BACKGROUND AND MOTIVATION 

In this section, we illustrate the event-driven programming 
model in Node.js and atomicity violations occurring in a real-
world Node.js application. Then, we discuss the challenges in 
detecting atomicity violations in Node.js applications. 

A. Event-Driven Programming Model in Node.js 

The event-driven programming model in Node.js mainly 
consists of two parts: a single looper thread and a worker pool. 
The looper thread fetches events from its event queues, and 
executes their associated callbacks. For expensive operations, 
e.g., file read, Node.js delegates them to the worker pool, and 
executes them asynchronously. 

Event: An event in Node.js can be generated by network 
traffic (e.g., user request), timers, the completion of 
asynchronous operations, and platform APIs (e.g., 
process.nextTick and setImmediate). An event is processed by 
invoking its callback, which is registered associated with the 
event. According to the official Node.js documents [22], events 
can be categorized into five types according to their sources: 
Timeout, Immediate, nextTick, promise, and IO, whose events 
are generated by setTimeout(), setImmediate(), 
process.nextTick(), promise, and asynchronous I/O, respectively. 
Events with different types are put into their corresponding 
event queues in Node.js. 

Event queue: Once an event is generated, it is put into an 
event queue. Node.js consists of seven event queues that hold 
different types of events: timers, I/O, pending, idle, prepare, 
check, and close [22]. For each event queue, its events are pro-
cessed in the order that they are enqueued. Node.js provides 
mechanisms to prioritize events in different event queues. For 
example, an event scheduled by process.nextTick will be pro-
cessed immediately after the current event is processed. 

Looper thread: The looper thread continuously checks the 
event queues, selects one event to process at a time. In Node.js, 
there is only one looper thread. Thus, each event is guaranteed 
to be processed atomically, without interruption. In Node.js, the 
looper thread processes the above seven event queues in a 
round-robin manner: when a queue has been exhausted or the 
amount of the executed callbacks for a queue reaches a given 
threshold, the looper thread will move on to the next queue. 

Asynchronous operation: Expensive operations are 
delegated to the worker pool, and executed asynchronously. 
When the asynchronous operations are done, a ‘operation done’ 
event will be put into the event queues, and consumed later by 
the looper thread. By offloading expensive operations to the 
worker pool, the looper thread will not be blocked by expensive 
operations. 

Callback chain: To avoid blocking the looper thread, a 
heavy task is usually divided into multiple steps {s1, s2, …, sn}, 
which are connected by intermediate events and their associated 
callbacks {cb1, cb2, …, cbn}. These callbacks form a callback 
chain. 

B. Motivating Example 

Fig. 2 shows the simplified code snippet extracted from a 
real-world Node.js application, change propagation [23], which 
contains an atomicity violation reported in [24]. 



This code snippet is used to process topic changes. In this 
example, users can subscribe a topic by calling 
subscribe(someTopic) and a callback cbSubscribe is registered 
to process the topic changes by calling then method (Line 2). 
When the topic changes, callback cbSubscribe is triggered with 
the parameter message that stores the topic change information. 
It copies the value of message to x.msg (Line 3) and then 
registers a callback cbTimeout by setTimeout API (Line 4). 
When the timer expiration event happens, callback cbTimeout is 
triggered. If the value of x.msg is valid (Line 5), cbTimeout 
offloads an asynchronous I/O operation to the worker pool to 
write the variable x.msg to file log.txt by calling the method 
writeFile (Line 6). When the file write is completed, callback 
cbFs registered by fs.writeFile (Line 6) is triggered to clear the 
content of x.msg (Line 7). 

In this example, the processing for a topic change is divided 
into three callbacks, i.e., cbSubscribe, cbTimeout and cbFs, 
which forms a callback chain. For each topic change, the 
execution order of cbSubscribe, cbTimeout and cbFs is 
deterministic, namely cbSubscribe → cbTimeout → cbFs. The 
callback chain is used to process the specific task, and the 
atomicity of the callback chain should be guaranteed. For 
example, cbSubscribe and cbTimeout access the shared variable 
x.msg, hence they should be executed consecutively, without 
interruption. Although the execution order among the events 
(i.e., callbacks) in a callback chain is deterministic, the atomicity 
of the callback chain is not guaranteed by Node.js. Let’s assume 
that two topic changes change-1 and change-2 simultaneously 
arrive. The callback chain will be executed twice, once per 
request. For simplicity, we denote an execution of callback cb 
for request change-x as cbx (𝑥 ∈ {1, 2}). Fig. 3a shows a correct 
execution trace, in which two changes are processed one by one. 

However, the two executions of change-1 and change-2 can 
interleave and thus introduce atomicity violations. In  the buggy 

interleaving execution  in Fig. 3b  cbFs1 interleaves between 
cbSubscribe2 and cbTimeout2, and sets variable x.msg to 
undefined. Thus, the succeeding cbTimeout2 switches to a 
different branch in Line 5 and does not save the message in 
change-2. Fig. 3c shows another buggy interleaving execution 

, in which, cbSubscribe2 interleaves between cbSubscribe1 and 
cbTimeout1, and overwrites the message in change-1 (Line 3). 
Thus, the message in change-1 is lost. 

C. Approach Overview 

In this paper, we propose NodeAV to dynamically detect 
atomicity violations in Node.js applications. We need to address 
four technical challenges. (1) How can we model the contention 
on external resources, e.g., the file in Fig. 1? Existing studies 
[8][9] have shown that about a half of concurrency bugs in 
Node.js applications contend against external resources. (2) 
Node.js has various mechanisms for event-driven programming, 
including several system-specific scheduling APIs, e.g., 
process.nextTick and promise [22][25]. How can we build a 
precise happens-before relation among events based on an 
collected execution trace? (3) The atomicity intentions of 
developers are usually not documented explicitly. What events 
can form an atomic event group? (4) In what situation, some 
events can cause atomicity violations of atomic event groups? 

For the first challenge, we summarize the file system APIs 
in Node.js into basic access types, and regard each API as one 
or multiple basic access types, e.g., read and write. For the 
second challenge, we design happens-before model to capture 
partial order among events in Node.js applications. For the third 
challenge, automatically checking which events can form an 
atomic event group is a hard problem, as it depends on the high-
level semantics of events involved in an application. Instead, we 
only check whether two events (atomic event pair) should be 
processed together without interruption (i.e., atomically). We 
require that (a) the two events access the same resource (e.g., 
shared variables or files) and (b) the execution order of two 
events can be determined by happens-before relations (e.g., 
callback chain in Fig. 3). For the fourth challenge, we determine 
whether an atomic event pair and a related interleaving event can 
be serializable. We borrow the idea from the serializability in 
multithreaded programs [10], and apply atomicity violation 
patterns on event-driven Node.js applications. 

   

(a) Correct trace 1 (b) Buggy trace  (c) Buggy trace  

Fig. 3. Three execution traces for the code snippet in Fig. 2. The solid boxes represent events and the dotted boxes represent virtual events that will not 

happen in the execution. The solid arrows denote the happens-before relation among events, and the dotted arrows denote the execution order. In  cbFs1 

that sets variable x.msg to undefined causes the succeeding cbTimeout2 to fail. In  cbSubscribe2 that overwrites variable x.msg written by cbSubscribe1 

causes the message for change-1 lost. 
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Fig. 2. Code snippet of an atomicity violation. 

1. var x={msg: undefined};

2. subscribe (someTopic).then (function cbSubscribe (message) {

3. x.msg=message;

4. setTimeout (function cbTimeout () {

5. if (x.msg)

6. fs.writeFile (‘log.txt’, x.msg, function cbFs () {

7. x.msg=undefined;

8. });

9. }, 100);

10. }); 



III. APPROACH 

Given the source code of a Node.js application and its test 
suite, NodeAV detects atomicity violations in three steps. First, 
it instruments the source code, and then executes the test suite 
on the instrumented version to collect execution trace, including 
events, read/write to variables, and so on (Section A). Second, 
we design happens-before model for Node.js and build a 
happens-before graph for events in the execution trace, which 
reflects the partial order among events (Section B). Third, we 
infer atomic event pairs based on happens-before graphs, and 
detect atomicity violations based on predesigned atomicity 
violation patterns (Section C). 

A. Execution Trace 

A Node.js application’s execution consists of a number of 
events, i.e., the execution of events’ associated callbacks. Thus, 
an execution trace of a Node.js application is a sequence of 
operations that are performed by events in the execution. 

The operations in an execution trace are listed in Fig. 4. Note 
that, we only consider these operations in Fig. 4, since other 
parts in Node.js applications, e.g., conditionals, loops and 
expressions, are irrelevant to atomicity violation detection and 
omitted for brevity. 

• start(e) and end(e): The begin and end of an event e, 
respectively. 

• register(e, listener): Event e registers a listener, which 
contains an expected event listener.event, and an 
associated listener.callback. When the expected event 
listener.event is triggered, listener.callback will be 
executed. When registering a listener, the type of its 
expected event listener.event.eType is determined. For 
example, fs.readFile(‘log.txt’, cb) registers a listerner that 
listens on the file read done event with the type of IO. As 
discussed earlier in Section II.A, Node.js provides several 
APIs to register listeners with different expected event 
types, e.g., process.nextTick and setImmediate. We map 
these APIs into register operations with their expected 
event types. 

• trigger(e, u): Event e triggers an event u so that event u is 
put into the corresponding event queue, and its associated 
callback will be executed. In Node.js applications, 
developers can use system-specific APIs to generate 
specific events, e.g., process.nextTick, setImmediate, and 
function resolve in promise [25]. When an event is 
triggered, it will be put into the corresponding event queue 
according to its event type. 

• trigger(libuv, u): Node.js underlying platform (i.e., libuv 
[26]) can generate timeout events and I/O events, etc. For 
example, a file read done event is triggered by libuv, and 
its triggering timing is unknown. When an event is 
triggered by libuv, it will be put into the related event queue 
according to its event type. 

• access(e, resource, type): Event e accesses to a shared 
resource with a specific accessing type. 

Shared resources are accessed by multiple events. In Node.js, 
shared resources include variables (e.g., variable x.msg in Fig. 2) 

and external resources (e.g., file ‘tmp.txt’ in Fig. 1). For each 
shared resource, its accessing type can be generally abstracted 
into two types: read and write. We describe accessing types for 
three kinds of shared resources in the following. 

• Variable. Reading variables and getting field of objects are 
considered as an operation of type read. Writing variables 
and putting fields of objects are considered as an operation 
of type write. Specially, functions are treated as a special 
kind of objects. We regard a declaration of a function f as 
an operation of type write on variable f and a call of the 
function f as an operation of type read on variable f. 

• Native object. JavaScript predefines a large number of 
native objects [27], such as Array and String. The 
properties of native objects are accessed by native methods. 
We study the semantics of native methods and map them 
into one or multiple operations of type read and write on 
native objects. 

• File. We map each file system API into one or multiple 
operations of type read and write on files. For instance, 
fs.readFile(foo, …) is mapped into an operation of type 
read on file foo and fs.copyFile(src, dest, …) is mapped 
into an operation of type read on file src and an operation 
of type write on file dest. 

B. Happens-Before Relaion 

Given an execution trace 𝜏  for a Node.js application, 
happens-before relation ≺ is a partial order among events in the 
execution trace. We denote event e1 happens before event e2 as 
𝑒1 ≺ 𝑒2. 

For brevity, we also denote an operation a happens before b 
as 𝑎 ≺ 𝑏, an operation a happens before all operations in event 
e as 𝑎 ≺ 𝑒 , and all operations in event e happen before an 
operation a as 𝑒 ≺ 𝑎 . Here, we overload the happens-before 
operator for operations and events. We present our happens-
before rules in Node.js applications as follows. 

Rule 1 (Transitivity): The happens-before relation ≺  is 
transitive, i.e., if 𝑒1 ≺ 𝑒2 and 𝑒2 ≺ 𝑒3, then 𝑒1 ≺ 𝑒3. 

Rule 2 (Program order): If operations a and b are 
performed by the same event e and a occurs before b in event e, 
then 𝑎 ≺ 𝑏. 

Rule 3 (Event atomicity): In Node.js, an event is processed 
without interruption by the looper thread. In other words, an 
event is either processed atomically or not processed. Namely, 
for any operation a in event e1 and any operation b in event e2, 
if a happens before b, then any operation in event e1 happens 
before any operation in event e2. Formally: 

if 𝑠𝑡𝑎𝑟𝑡(𝑒1) ≺ 𝑒𝑛𝑑(𝑒2), then 𝑒𝑛𝑑(𝑒1) ≺ start(𝑒2) 

Trace → Operation* 
Operation → start(e) | end(e) | 
                         register(e, listener) | trigger(e, u) | trigger (libuv, u) 

                      access(e, resource, type) 
𝑒, 𝑢 ∈ 𝐸𝑣𝑒𝑛𝑡 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ∈ Shared variables ∪  files 

𝑡𝑦𝑝𝑒 ∈ {𝑟𝑒𝑎𝑑, 𝑤𝑟𝑖𝑡𝑒} 
 

Fig. 4. Operations in a Node.js execution trace. 



Rule 4 (Event register): If event e1 performs an operation 
register(e1, listener) and event e2 triggers the listener and 
executes its associated callback, then 𝑒1 ≺ 𝑒2. Formally: 

∀ 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑒1, 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟), if 𝑒2 = 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟. 𝑒𝑣𝑒𝑛𝑡,
then 𝑒1 ≺ 𝑒2 

Rule 5 (Event trigger): If event e1 performs an operation 
trigger(e1, e2) to put event e2 into its corresponding event queue, 
then 𝑒1 ≺ 𝑒2. Formally: 

∀ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒1, 𝑒2), 𝑒1 ≺ 𝑒2 

Rule 6 (Event trigger by libuv): As discussed in Section 
III.A, libuv (i.e., Node.js underlying platform) can generate 
timeout events and I/O events, etc. These trigger operations 
issued by libuv are non-deteministic. However, we can restrict 
their happens-before relation with other operations. If event e1 
performs an operation register(e1, listener) and event e2 is 
triggered by libuv, and associates with the listener, then 
operation register(e1, listener) happens before trigger(libuv, e2) 
and trigger(libuv, e2) happens before e2. Formally: 

∀ 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑒1, 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟) and 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑙𝑖𝑏𝑢𝑣, 𝑒2), 
if 𝑒2 = 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟. 𝑒𝑣𝑒𝑛𝑡, 

then 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑒1, 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟) ≺ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑙𝑖𝑏𝑢𝑣, 𝑒2) ≺ 𝑒2 

As discussed earlier in Section II.A, events with different 
types are put into different event queues, and the looper thread 
processes event queues in a round-robin manner. According to 
the Node.js official documents [22] and implementation, events 
in different event queues have different priorities to be processed 
by the looper thread. We assign priorities to events according to 
event types. Basically, there are four levels of priorities. 

• 0 for nextTick and promise events, triggered by 
process.nextTick and promise. 

• 1 for Immediate events, triggered by setImmediate. 

• 2 for Timeout events, triggered by setTimeout. 

• 3 for IO events, triggered by asynchronous I/O. 

Rule 7 (Events with the same priority): Events in the same 
event queue have the same priority, and are processed in their 
enqueue order. If an operation trigger(e1, u1) happens before 
another operation trigger(e2, u2) and the priority of event u1 is 
the same as the priority of event u2, then 𝑢1 ≺ 𝑢2 . We use 
priority(e) denotes the priority of an event e. Formally: 

if 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒1, 𝑢1) ≺ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒2, 𝑢2) 𝑎𝑛𝑑 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢1)
= 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢2), 𝑡ℎ𝑒𝑛 𝑢1 ≺ 𝑢2 

Rule 8 (Events with different priorities): According to the 
Node.js official documents [22] and implementation, Node.js 
basically adopts a round-robin manner to process events with 
different priority in event queues. Therefore, Node.js does not 
guarantee that an event with higher priority will be scheduled 
earlier, e.g., a Timeout event may be scheduled before an 
Immediate event, even the previous one has a higher priority. 
The Node strategy in [28] precisely models the Node.js 
scheduling: If there exist events of priority 0, then Node.js 
executes all these events with priority 0 recursively; Otherwise, 
for events with other priorities (i.e., 1, 2 and 3), Node.js picks 
one event to execute, regardless of its priority. 

Suppose that event e1 performs an operation trigger(e1, u1) 
before and e2 performs an operation trigger(e2, u2), and event u1 
and u2 have different priorities. There are three cases. 

Case 1: event u1 is of priority 0. Formally: 

if 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒1, 𝑢1) ≺ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒2, 𝑢2), 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢1) = 0 
and 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢2) ≠ 0, then 𝑢1 ≺ 𝑢2 

Case 2: event u2 is of priority 0. In this case, if the trigger(e2, 
u2) occurs before the execution of u1, then 𝑢2 ≺ 𝑢1. Formally: 

if 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒1, 𝑢1) ≺ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒2, 𝑢2), 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢1) ≠ 0, 
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑢2) = 0 and 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑒2, 𝑢2) ≺ 𝑏𝑒𝑔𝑖𝑛(𝑢1), 

then 𝑢2 ≺ 𝑢1 

Case 3: Neither event u1 or u2 are of priority 0. In this case, 
the happens-before relation of u1 and u2 cannot be determined. 

C. Atomicity Violation Detection 

In Node.js, developers usually divide a task into a group of 
events, which are non-deterministically scheduled by Node.js. 
Since this group of events should collaborate to finish the special 
task, developers usually assume that these events are processed 
consecutively without interruption. However, the atomicity of 
this event group is not guaranteed by Node.js, and other events 
may interrupt the execution of atomic event group, break down 
the atomicity. 

The key to atomicity violation detection in Node.js is to 
automatically infer which events can form atomic event groups. 
Developers’ atomicity intentions of events involve high-level 
the semantics of the application and are not documented 
explicitly. It is hard to infer these high-level atomicity intentions. 
However, we have two observations which help us determine 
whether some events should be executed without interruption. 

• Callback chain: As discussed earlier in Section II.A, a 
callback chain clearly describes how a task is performed 
by a sequence of events. This usually reflects that the 
events in the callback chain should not be interrupted. For 
example, in Fig. 3a, event cbSubscribe1 and cbTimeout1 are 
intended to be executed together to process task change-1. 

• Predesigned execution order of events: The execution 
orders of two or more events can be clearly designed in the 
application. For example, in Fig. 5, the events triggered by 
two setImmediate operations are ordered by Rule 7 in 
Section III.B. Developers assume that two consecutive 
events cb1 and cb2 should not be broken down. 

According to the above two observations, we find that 
developers usually schedule an ordered sequence of events to 
deal with a task, and assume events in the ordered sequence 
belong to an atomic event group. The execution order of events 
can be precisely expressed by the happens-before relation in 

 
Fig. 5. Two events with predesigned execution order. 

1. var x;

2. setImmediate (function cb1 () {

3. x=1;

4. });

5. setImmediate (function cb2 () {

6. if (x==1) …

7. });



Section III.B. However, conservatively treating all events 
involved into happens-before relation will result into that all 
events in an execution trace are treated as an atomic event group. 
It is because the start event (similar to the main function) in an 
application happens before all other events in an execution. This 
motivates us to design a general heuristic to infer atomic event 
pairs, rather than atomic event groups. 

Atomic event pair: Given event e and u, if e happens before 
u, and e and u have some operations op1 and op2 that access the 
same resource, then e and u forms an atomic event pair, denoted 
as atomic(e, u). We use resource(op) to denote the resource that 
operation op accesses. Formally, event e and u in an atomic 
event pair satisfy the following two conditions. 

• 𝑒 ≺ 𝑢 

• ∃𝑜𝑝1 ∈ 𝑒, 𝑜𝑝2 ∈ 𝑢, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝1) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝2) 

The first condition requires that events in an atomic event 
group are usually ordered. The second condition indicates that if 
two events do not share any resource, they can be considered as 
independent events, and we do not need to force the atomicity 
among them. Note that, two events that are not ordered by 
happens-before relation are not treated as atomic event pair. 

We further define atomicity violation as follows. 

Atomicity violation: Given an atomic event pair atomic(e, 
u) and another event t, if event t can interrupt into this pair, and 
event e, u and t have some operations that access the same 
resource, then atomic(e, u) and event t form an atomicity 
violation. Formally, atomic event pair atomic(e, u) and event t 
should satisfy the following three conditions. Here, 𝑒 ⊀ 𝑡 
denotes event e does not happen before event t. 

• 𝑒 ≺ 𝑢 

• 𝑒 ⊀ 𝑡 ∧ 𝑡 ⊀ 𝑒 ∨ 𝑢 ⊀ 𝑡 ∧ 𝑡 ⊀ 𝑢 

• ∃𝑜𝑝1 ∈ 𝑒, 𝑜𝑝2 ∈ 𝑢, 𝑜𝑝3 ∈ 𝑡, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝1) =
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝2) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑜𝑝3) 

The first condition requires that event e and u can be an 
atomic event pair. The second condition indicates that event e 
and t do not have happens-before relation, or event u and t does 
not have happens-before relation. So, event t can happen 
between event e and u. The application may run correctly when 
event t happens before or after the atomic event pair. The third 
condition indicates that three events share the same resource, 
otherwise, they can be considered as independent events. 

Fig. 6a-c shows three scenarios in which atomicity violations 
can happen. In Fig. 6d, 𝑒 ≺ 𝑡 and 𝑡 ≺ 𝑢, so that event e, t and u 
must be executed in the order of 𝑒 ⟶ 𝑡 ⟶ 𝑢. Note that, even 

though this execution order is the same as those in atomicity 
violations of Fig. 6a-c, we do not consider event e, t, and u in 
Fig. 6d form an atomicity violation. It is because 𝑒 ⟶ 𝑡 ⟶ 𝑢 is 
the only execution order for these three events, and should be 
excepted execution order by developers. 

Although three events e, t and u in Fig. 6a-c can form an 
atomicity violation, they do not necessarily incur different 
execution results. For example, in Fig. 7a, event e, u and t all 
access the shared resource x with the type read, so the execution 
result is not affected by this atomicity violation. In contrast, in 
Fig. 1, atomic event pair (cbImmediate, cbExist) is interrupted 
by event cbTimeout, which performs an operation of type write 
on the shared file (Line 8). This atomicity violation affects the 
execution result of the operation of type read in event cbExist 
(Line 8). If an atomicity violation does not affect the execution 
result of an application, developers do not need to fix it. Thus, 
we only focus on atomicity violations which can incur different 
execution results. 

Inspired by existing studies on atomicity violations in 
multithreaded programs [10], we borrow the idea of 
serializability from multithreaded programs, and design 
atomicity violation patterns based on shared resource accessing 
types. Based on the atomicity violation patterns in multithreaded 
program [10], for each atomicity violation scenario in Fig. 6a-c, 
we design four resource accessing patterns that can cause 
different execution results. Since all the three scenarios in Fig. 
6a-c have the same resource accessing patterns, we only use the 
atomicity violation scenario in Fig. 6a as an example. Its four 
resource accessing patterns are shown as Fig. 7b-e. These four 
resource accessing patterns are briefly described as follows. 

• Read-Write-Read in Fig. 7b: The read in event u gets a 
different value of resource x with that in event e. 

• Read-Write-Read in Fig. 7c: The read in event u cannot 
get the expected value of resource x written by event e. 

• Write-Read-Write in Fig. 7d: The read in t gets the dirty 
data of resource x, which is written by event e. 

• Read-Write-Write in Fig. 7e: The write of event u depends 
on the value of resource x read by event e, which is 
overwritten by event t. 

NodeAV monitors the executions of a Node.js application, 
and predicts atomicity violations that can happen in the future 
under the same input, and outputs the three events involved in 
each atomicity violation. We briefly describe the NodeAV 
detection algorithm as follows. 

Given an execution trace of a Node.js application, we build 
a happens-before graph among events based on the happens-

    
(a) (b) (c) (d) 

Fig. 6. Subgraph a-c present three atomicity violation scenarios and subgraph d is not an atomicity violation. The solid lines denote happens-before relation 

and the dotted lines denote execution order. 
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before rules in Section III.B, in which, nodes denote events and 
edges denote happens-before relation. We construct the 
atomicity violation triple <e1, e2, e3> in the following steps. (1) 
For any two event e1 and e2, if 𝑒1 ≺ 𝑒2, we further check whether 
e1 and e2 access the same resource. If yes, they form an atomic 
event pair atomic(e1, e2). (2) We try to find an event e3 that do 
not have edges with e1 or e2 in the happens-before graph. That’s 
said, event e3 do not have happens-before relation with e1 or e2. 
For each found e3, we form a candidate atomicity violation triple 
<e1, e2, e3>. (3) For each candidate triple, we validate whether 
they access the same resource in the patterns shown in Fig. 7b-
e. If one pattern matches, the candidate triple is considered as an 
atomicity violation. 

IV. IMPLEMENTATION 

NodeAV first generates an execution trace by instrumenting 
the original Node.js application, and then performs atomicity 
violation detection offline on the execution trace. Here we 
mainly introduce the implementation details of trace generation, 
which is not described in Section III. 

Node.js utilizes the async_hooks module [29], which is 
introduced in Node.js 8.6, to collect event scheduling operations, 
namely start(e), end(e), register(e, listener) and trigger(e, u). 
async_hooks provides four APIs to track the lifetime of each 
event: init, before, after and promiseResolve, which are 
triggered when a callback is registered, before and after an event 
and when resolve method is invoked. We use these APIs to 
record all above operations. In addition, async_hooks provides 
an API executionAsyncId, which returns the event that performs 
a given operation. 

NodeAV utilizes Jalangi [30] to collect resource accessing 
operations. Jalangi interprets each instruction, such as read and 
putField instructions, and provides detailed information for each 
instruction, e.g., the name of a variable, and the value read from 
the variable. We use Jalangi to query the instructions that we are 
interested in, including read, write, putField, getField, declare, 
invokeFun, etc. For an operation access(e, resource, type), we 
obtain its information e by calling the method 
async_hooks.executionAsyncId and record the type of operation 
type. As discussed in Section III.C, we need to determine 
whether the resources accessed by two operations are the same. 
We use logic addresses to uniquely identify resources. We 
obtain logic addresses for different types of resources as follows. 

• Variable. For a variable, we use a tuple <scope, name> as 
its logic address, where scope and name refer to the static 
scope and the name of the variable, respectively. For an 
object obj, when it is created, we allocate a unique ID objId 

to it. When its property obj.prop is accessed, we use a tuple 
<objId, name> to denote its logic address, where name 
refers to the name of the property prop. 

• File. We use the absolute path of a file as its logical address. 
Jalangi provides an API invokeFunPre, which is called 
before a method invocation. We use invokeFunPre to 
check whether the method is a file system API. If yes, we 
use our file system API model to transform the API 
invocation into corresponding operations. In our file 
system API model, we specify how we transform each API 
into basic operations. For example, fs.copyFile(src, 
dest, …) is parsed into an operation with read type on src 
and an operation with write type on dest. 

V. EVALUATION 

We evaluate NodeAV by answering the following two 
research questions: 

RQ1: Can NodeAV effectively detect atomicity violations in 
Node.js applications? 

RQ2: How is the performance of NodeAV? Can NodeAV 
scale to analyze real-world Node.js applications? 

A. Experimental Subjects and Setup 

We evaluate NodeAV on two datasets of real-world Node.js 
atomicity violations and applications. 

Dataset-1: Known atomicity violations. To verify whether 
NodeAV can effectively detect known atomicity violations in 
Node.js applications, we build dataset-1 based on Node.fz [9] 
and NodeCB [8], which contain atomicity violations in real-
world Node.js applications. We select an atomicity violation in 
Node.fz and NodeCB if it satisfies the following conditions: (1) 
The application that contains the atomicity violation is able to 
run on Node.js 8.6 or above, which supports the async_hooks 
module used by NodeAV. (2) The atomicity violation can be 
reproduced or has clear description in the bug report about how 
it occurs. If we cannot reproduce the original atomicity violation 
for some reasons, e.g., unavailable buggy version in 
wikimedia/change-propagation, then we design a standalone 
application to replicate the buggy code described in the bug 
report. The last three atomicity violations in are reproduced in 
Table I this way. (3) The application that contains the atomicity 
violation should have test cases so that we can use them to 
collect runtime traces. In case that the application does not 
contain related test cases, we develop a simple test case to trigger 
the actions described in the bug report. Finally, we obtain 9 
atomicity violations from 8 applications, as shown in Table I. 
The column Project refers to the application, the column 
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Fig. 7. The atomicity violation pattern in subgraph a does not affect the execution result, whereas the four atomicity violation patterns in subgraph b-e can 

affect the execution result. Event e, u and t share the resource x and their accessing types are denoted in each box. Event e happens before u, denoted by the 

solid line. They form an atomic event pair atomic(e, u). The dotted lines denote possible execution order. 
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Description gives a brief description of each application and the 
column Issue ID shows the issue ID in GitHub. 

Dataset-2: Real-world Node.js applications for detecting 
new atomicity violations. To evaluate whether NodeAV can 
find new atomicity violations in real-world Node.js applications, 
we collect 10 Node.js applications from two aspects. First, we 
update the applications in dataset-1 to their newest versions. We 
remove an application, if (1) it is incompatible with NodeAV, or 
(2) it does not have available test suites for execution trace 
collection, e.g., brave/browser-laptop, or (3) it cannot be built, 
e.g., wikimedia/change-propagation and gadicc/meteor. Thus, 
we obtain 5 Node.js applications from dataset-1, as shown in the 
first 5 rows in Table II. Second, we collect another 5 popular 
Node.js applications from GitHub, which exhibit certain 
concurrent behavior, e.g., having concurrency bug issues. They 
are shown in the last 5 rows in Table II. In Table II, column Star 
shows the number of stargazers in GitHub. We can see that most 
of our selected applications are popular. 

We perform our experiments in the following steps. First, we 
use NodeAV to instrument the source code of an application. 
Second, we run the test cases included in the bug report or test 
cases developed by us and collect execution traces. Third, we 
use NodeAV to detect atomicity violations based on the 
collected trace. To answer RQ1, we use NodeAV to detect 

known atomicity violations on dataset-1 and find new atomicity 
violations on dataset-2. To answer RQ2, we measure the runtime 
overhead of NodeAV on dataset-2. 

B. Atomicity Violation Detection Results (RQ1) 

Detect known atomicity violations. We use dataset-1 to 
evaluate NodeAV’s ability to detect known atomicity violations. 
Table III shows the detection result. The column ID refers to the 
ID in Table I. The column Detected indicates whether the known 
atomicity violation is detected, with value Y indicating yes and 
N indicating no. The column #New violation represents the 
number of new atomicity violations detected by NodeAV. We 
manually inspect the code to validate whether each new detected 
atomicity violation is real. 

As shown in Table III, NodeAV detects 7 known atomicity 
violation out of 9. We further detect 8 new atomicity violations 
from 3 applications. After manual inspection, we find that all 
these newly detected atomicity violations are real. For example, 
in project wikimedia/change-propagation, NodeAV reveals a 
new buggy interleaving, which has not been found in the original 
bug report. This application is the prototype of our example in 
Fig. 2. The new atomicity violation happens when the second 
topic change overlaps the message of the first change between 
the processing of the first topic change, as shown in Fig. 3c. Note 
that, for atomicity violations with ID 4 and 5, NodeAV detects 
different numbers of new atomicity violations for the same 
application, since we use different test cases for these two 
known atomicity violations. 

As shown in Table III, 2 known atomicity violations are not 
detected by NodeAV, i.e., the atomicity violations with ID 5 and 
6. We further investigate why NodeAV misses these two 
atomicity violations. For the atomicity violation with ID 5, its 
related events are not triggered in the collected trace, and thus 
NodeAV cannot detect the atomicity violation from the 
unexplored execution trace. For the atomicity violation with ID 

TABLE II DATASET-2: APPLICATIONS UNDER DETECTION. THE PROJECTS HAVE ACCESSIBLE LINKS. 

ID Project Description LoC Star 

1 michaelwittig/node-logger-file File endpoint for cinovo-logger 367 2 

2 substack/node-mkdir-p Similar function to mkdir -p 76 1,218 

3 hapijs/nes Native WebSocket support to hapi-based application servers 1,616 146 

4 telefonicaid/fiware-pep-steelskin Implementation of the FIWARE PEP GE 1,655 9 

5 node-modules/agentkeepalive Support keepalive http agent 312 251 

6 nickewing/line-reader Asynchronous line-by-line file reader 256 384 

7 sitegui/nodejs-websocket A module for web socket server and client 726 514 

8 JoshuaWise/better-sqlite3 The fastest and simplest library for SQLite3 285 1,050 

9 derbyjs/racer Realtime model synchronization engine 4,312 1,098 

10 simplecrawler/simplecrawler Flexible event driven crawler 285 1,847 

 

TABLE III EXPERIMENTAL RESULT ON DATASET-1. 

ID Project Detected #New violation 

1 michaelwittig/node-logger-file Y 3 

2 substack/node-mkdir-p Y 0 

3 hapijs/nes Y 0 

4 telefonicaid/fiware-pep-steelskin Y 4 

5 telefonicaid/fiware-pep-steelskin N 0 

6 node-modules/agentkeepalive N 0 

7 wikimedia/change-propagation Y 1 

8 brave/browser-laptop Y 0 

9 gadicc/meteor-hmr Y 0 

 

TABLE I DATASET-1: KNOWN ATOMICITY VIOLATIONS. THE PROJECTS HAVE ACCESSIBLE LINKS. 

ID Project Description Issue ID 

1 michaelwittig/node-logger-file File endpoint for cinovo-logger 1 

2 substack/node-mkdir-p Similar function to mkdir -p 2 

3 hapijs/nes Native WebSocket support to hapi-based application servers 18 

4 telefonicaid/fiware-pep-steelskin Implementation of the FIWARE PEP GE 269 

5 telefonicaid/fiware-pep-steelskin Implementation of the FIWARE PEP GE 279 

6 node-modules/agentkeepalive Support keepalive http agent 23 

7 wikimedia/change-propagation A REST-based queuing module for Apache Kafka 84 

8 brave/browser-laptop Desktop browser for macOS, Windows, and Linux 3,273 

9 gadicc/meteor-hmr Hot module replacement for meteor 71 

 

https://github.com/michaelwittig/node-logger-file
https://github.com/substack/node-mkdirp
https://github.com/hapijs/nes
https://github.com/telefonicaid/fiware-pep-steelskin
https://github.com/node-modules/agentkeepalive/issues/23
https://github.com/nickewing/line-reader
https://github.com/sitegui/nodejs-websocket
https://github.com/JoshuaWise/better-sqlite3
https://github.com/derbyjs/racer
https://github.com/simplecrawler/simplecrawler
https://github.com/michaelwittig/node-logger-file
https://github.com/substack/node-mkdirp
https://github.com/hapijs/nes
https://github.com/telefonicaid/fiware-pep-steelskin
https://github.com/telefonicaid/fiware-pep-steelskin
https://github.com/node-modules/agentkeepalive/issues/23
https://github.com/wikimedia/change-propagation
https://github.com/brave/browser-laptop
https://github.com/gadicc/meteor-hmr


6, the accesses to the racy shared resource socket are not 
captured by NodeAV. It is because we do not model the Net API 
destroy() [32] in Section III.A, which destroys a socket. 

Detect new atomicity violations. We use dataset-2 to 
evaluate NodeAV’s ability to detect new atomicity violations. 
Table IV shows the result. The column Project denotes the 
applications under detection. The column #Violation represents 
the number of atomicity violations detected by NodeAV. The 
column #FP represents the number of false positives. We 
determine whether a reported atomicity violation is a false 
positive by manually reproducing it or reviewing the code. 

As shown in Table IV, NodeAV detects 12 new atomicity 
violations from 6 applications. We manually validate whether 
these detected atomicity violations are true. Finally, we classify 
the detected atomicity violations into three categories: harmful 
atomicity violations, benign atomicity violations and false 
positives. We discuss them as follows. 

NodeAV detects 3 harmful atomicity violations, 2 in 
michaelwitting/node-logger-file and 1 in telefonicaid/fiware-
pep-steelskin. For example, in michaelwittig/node-logger-file, 
Event create creates a logging file, and the following event log 
writes logs into the logging file. However, another event close, 
which closes the logging file can occur between event create and 
log. As a result, event log throws an exception and fails. We 
have reported these atomicity violations on GitHub [33][34][35]. 

NodeAV detects 8 benign atomicity violations. Benign 
atomicity violations happen in two scenarios. First, the atomicity 
violation has no impact on the result. For example, the pattern 
Write-Read-Write in Fig. 7d indicates that event t gets dirty data. 
However, if event e and u store the same data, event t gets the 
same data in all schedules. Second, the impact resulting from the 
violation is expected by developers. For example, in the pattern 
Write-Write-Read in Fig. 7c, if event t happens between event e 
and u, the program checks that event u gets data written by event 
t, and throws an exception, which may be the expected behavior. 

One atomicity violation reported in telefonicaid/fiware-pep-
steelskin is false positive. NodeAV can explore an atomicity 
violation 𝑒 ⟶ 𝑡 ⟶ 𝑢 , as shown Fig. 7b. However, event t 
modifies the application’s state, resulting in that event u never 
be triggered. Thus, NodeAV reports a false positive. 

C. Performance Overhead (RQ2) 

We evaluate the performance of NodeAV on dataset-2. As 
shown in Table IV, the column #Event represents the number of 

events that NodeAV collects. The category Time shows the 
results about performance. The column Orig shows the time 
running the test suites on the original application, the column 
Trace shows the time running the test suites on the instrumented 
application to collect execution traces. The column Analysis 
shows the time for offline detection of atomicity violations 
based on the collected traces. The column Total shows the total 
time, calculated by Trace+Analysis. 

As shown in Table II, our experimental applications are 
usually huge, including thousands of lines of code. Table IV 
shows that, during the trace collection, NodeAV obtained 
thousands of events, e.g., more than 39,000 events in the 
application telefonicaid/fiware-pep-steelskin. The column Total 
shows that NodeAV can analyze all these applications in no 
more than 71 seconds. The column Tracing overhead indicates 
the overhead caused by NodeAV when collecting traces, 
calculated by Trace/Orig. We can see that the runtime overhead 
ranges from 1.1X to 5.7X. This is acceptable for a dynamic 
analysis. The above results show that NodeAV can work on real-
world Node.js applications. 

VI. DISCUSSION 

While our experiments show that NodeAV is promising in 
detecting atomicity violations in Node.js applications, we dis-
cuss potential threats and limitations in our approach. 

A. Threats to Validity 

Representativeness of our studied subjects. We select a 
number of atomicity violations in Node.js applications in our 
experiments. First, our selected atomicity violations come from 
real-world Node.js applications. Second, these atomicity 
violations have been used in existing studies, e.g., NodeCB [8] 
and Node.fz [9]. Thus, we believe our studied atomicity 
violations represent the real-world bugs. Most of our selected 
Node.js applications are popular, and have lots of stars in 
GitHub. We believe that these applications are representative. 

B. Limitations 

Supporting more Node.js versions. We utilize the 
async_hooks module to trace event scheduling operations in 
Node.js. The async_hooks module is only supported by Node.js 
8.6 or above. For now, we cannot handle Node.js applications 
that run on older Node.js versions yet. A new approach that can 
analyze these applications on older Node.js versions is required. 

API modeling. In our approach, we abstract each file system 
API into one or multiple operations with read and write types. 

TABLE IV EXPERIMENT RESULT ON DATASET-2 

ID Project #Violation #FP #Event 
Time (s) Tracing over-

head (X) Orig Trace Analysis Total 

1 michaelwittig/node-logger-file 2 0 1,752 19.4 31.9 31.2 63.1 1.6 

2 substack/node-mkdir-p 0 0 23 4.3 5.5 0.1 5.6 1.3 

3 hapijs/nes 1 0 34,211 4.7 7.5 3.7 11.2 1.6 

4 telefonicaid/fiware-pep-steelskin 6 1 39,757 7.3 14.4 35.4 49.8 2.0 

5 node-modules/agentkeepalive 0 0 10,873 65.7 70.1 0.6 70.7 1.1 

6 nickewing/line-reader 1 0 633 0.4 0.7 0.4 1.1 1.8 

7 sitegui/nodejs-websocket 1 0 676 0.2 0.9 1.0 1.9 4.5 

8 JoshuaWise/better-sqlite3 0 0 9,346 12.1 12.9 0.8 13.7 1.1 

9 derbyjs/racer 0 0 2,065 0.2 0.5 4.0 4.5 2.5 

10 simplecrawler/simplecrawler 1 0 446 4.7 26.6 0.3 26.9 5.7 

 



That’s said, we only consider equivalent influence on the file 
when calling an API but ignore the state of a file. We also treat 
asynchronous I/O as synchronous operations. A more precise 
model about file systems, e.g., the state machine in 2ndStrike 
[36] can be integrated into NodeAV. In addition, modeling more 
APIs, such as third-party database and network APIs, can also 
be integrated into NodeAV, and further improves the ability of 
NodeAV. 

VII. RELATED WORK 

To the best of our knowledge, no previous work presents (1) 
a formal definition of atomicity violations, (2) a happens-before 
relation and (3) an atomicity violation tool, for the event-driven 
Node.js applications. The event-driven architecture has been 
widely used in various software platforms, e.g., Android, client-
side and server-side JavaScript applications. Some approaches 
that target concurrency bugs in these systems has been proposed. 
In this section, we discuss related work that is close to ours. 

Multithreaded programs. Concurrency bug detection is a 
well-studied topic in multithreaded programs. Many approaches 
and tools have been developed to identify concurrency bugs in 
multithreaded programs, e.g., FastTrack [37], Eraser [38] for 
data races, AVIO [10], CTrigger [11], and Atomizer [39] for 
atomicity violations. These approaches are usually based on a 
multithreaded programming model, and use multithreaded 
specific happens-before relation to detect data races or atomicity 
violations. The event-driven model in Node.js applications is 
different from multithreaded programming model. For example, 
atomicity violations in multithreaded programs concern whether 
several shared variable accesses in a thread are interrupted by 
another thread, while atomicity violations in event-driven 
Node.js applications concern whether two consecutive events 
are interrupted by another event. Therefore, our work is 
orthogonal to existing studies in multithreaded programs. 

Android applications. Android adopts a mixed event-
driven and multithreaded programming model. Recently, some 
approaches have been proposed to detect event races in Android 
applications. CAFA [14], DroidRacer [15] and EventTrack [40] 
use dynamic analysis approaches to detect event races in 
Android applications. They usually build happens-before 
relation among events and threads based on the mixed 
programming model. SIERRA [41] proposes a precise and 
scalable static approach for detecting Android event races. 
Node.js adopts different event-driven model from Android 
applications, e.g., event queues and event scheduling. Further, 
existing studies mainly concern event races, which involve two 
events. While, our work mainly concerns atomicity violations 
among a group of events. 

Client-side JavaScript applications. Concurrency bugs in 
client-side JavaScript applications have drawn researchers’ 
attention recently. WAVE [16], WebRacer [17] and EventRacer 
[42] present the happens-before relation for client-side 
JavaScript applications, and further detect races in them. The 
happens-before model in client-side JavaScript applications 
includes DOM, web page loading, etc. ARROW [43] further 
proposes to automatically fix races in client-side JavaScript 
applications. Node.js applications do not concern DOM and web 
page loading that are the key elements in client-side JavaScript 
applications. Further, Node.js adopts different event queue 

model from client-side JavaScript applications. Thus, the above 
approaches cannot be directly applied on Node.js applications. 
In addition, existing studies on client-side JavaScript 
applications cannot handle atomicity violations among events. 

Node.js applications. The Node.js platform is relatively 
new, and as a result, there is limited work on analysis tools for 
Node.js applications, especially on concurrency bug detection. 
NodeCB [8] studies 57 concurrency bugs in real-world Node.js 
applications and obtains some interesting findings, e.g., 65% of 
concurrency bugs in Node.js are atomicity violations. This study 
motivates us to design an effective tool to detect atomicity 
violations in Node.js. Node.fz [9] is an event fuzzing tool for 
Node.js applications. It randomly shuffles the enqueue order in 
the event queues, and tries to yield different schedules and 
increase the possibility of race condition. While, our work 
systematically validates atomicity violations based on an 
execution trace. GEMs [44] presents a new parallel 
programming abstraction in Node.js, which combines message 
passing and shared-memory parallelism. Madsen et al. [45] 
proposes a static analysis approach to build the event-based call 
graph and detect bugs related to event handling, e.g., unhandled 
events and listeners registered too late. Loring et al. [28] 
proposes the first formalization of asynchronous execution 
model in Node.js, and async-contexts to formalize relationships 
between asynchronous events. The above studies are orthogonal 
to ours. 

As a new platform, other issues in Node.js have also drawn 
researchers’ attention. Since Node.js heavily depends on event 
handlers to achieve effective responsiveness, if an event handler 
performs a heavy computation, then it can block the event loop, 
and cause denial of service attacks [46]. Ojamaa et al. [47] argue 
how the Node.js design affects the security of Node.js 
applications. Synode [48] proposes a static analysis approach to 
prevent injection attack. 

VIII. CONCLUSION 

Although each event is guaranteed to be processed 
atomically, no effective mechanism in Node.js is provided to 
maintain the atomicity of an atomic event group, in which the 
events should be processed without interruption. This kind of 
atomicity violations are common in Node.js applications and 
often cause serious consequences. In this paper, we propose 
NodeAV to predictively detect atomicity violations based on a 
collected execution trace. We build the precise happens-before 
relation for events in the execution trace, and infer events that 
should be executed together without interruption. We further 
propose several atomicity violation patterns in the context of 
event-driven Node.js applications. We evaluate NodeAV on 
real-world Node.js applications and the experimental results 
show NodeAV can detect known atomicity violation, as well as 
new atomicity violations. 
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