
Context-Based Event Trace Reduction in Client-Side JavaScript Applications

Jie Wang, Wensheng Dou*, Chushu Gao, Yu Gao, Jun Wei
University of Chinese Academy of Sciences, China

State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, China
{wangjie12, wsdou, gaochushu, gaoyu15, wj}@otcaix.iscas.ac.cn

Abstract—Record-replay techniques are developed to facilitate
debugging client-side JavaScript application failures. They
faithfully record all events that reveal a failure, but record many
events irrelevant to the failure. Delta debugging adopts the
divide-and-conquer algorithm to generate a minimal event
subtrace that still reveals the same failure. However, delta
debugging is slow because it may generate lots of syntactically
infeasible candidate event subtraces in which some events can
trigger syntactical errors (e.g., ReferenceError and TypeError),
and thus cannot be replayed as expected. Based on this
observation, we propose EvMin, an effective and efficient
approach to remove failure-irrelevant events from an event
trace. We use the variable usage information (e.g., DOM
variable usage) in an event to model the event’s context. We
require that, each event in an event subtrace has the compatible
context with its corresponding one in the original event trace. In
this way, we avoid generating syntactically infeasible event
subtraces, and dramatically speed up delta debugging. We have
implemented EvMin and evaluated it on 10 real-world
JavaScript application failures. Our evaluation shows that
EvMin generates 72% fewer event subtraces, and takes 84% less
time than delta debugging.

Keywords-JavaScript; event trace reduction; delta debugging

I. INTRODUCTION

JavaScript has become the most popular language for
client-side JavaScript applications. Due to its dynamic and
event-driven features, it is challenging to debug client-side
JavaScript applications. Thus, various record-replay
techniques [1][2] are developed to faithfully reproduce the
failures in client-side JavaScript applications.

However, client-side JavaScript applications usually keep
running for a long time, e.g., writing a document in Google
Doc may take a few hours. Thus, existing record-replay
techniques [1][2][3][4] will generate a very long event trace.
For example, Mugshot [1] can generate 75-795KB
uncompressed event trace (nearly 3,000 events) per minute. It
is time-consuming and exhausting to debug with such a long
event trace. According to a recent study [5], a shortened event
trace can significantly increase programmers’ efficiency in
failure diagnosis, fault localization and fault correction.

Delta debugging [6][7][8] is a general technique
applicable to minimize failure-inducing inputs. Hammoudi et
al. [5] adapted the delta debugging algorithm proposed by
Zeller et al. [8] to minimize an event trace that leads to a
JavaScript application failure. The algorithm partitions the
event trace to a number of candidate subtraces and validates if

each subtrace s as well as its complement subtrace (i.e., the
events that are in the original trace but not in s) can reproduce
the original failure. If such a subtrace s is found, then the
algorithm repeats the same procedure on s until no shorter
subtrace can be found.

There usually exist complicated dependences among the
events in a real event trace, which is collected from the
execution of a client-side JavaScript application. Consider the
following example. Event ei creates some DOM elements that
are used by a following event ej. If event ei is ignored, then
event ej will trigger a TypeError. However, delta debugging
ignores such a relationship among the events in the recorded
event trace, and may generate many infeasible candidate
subtraces. Thus, much time is wasted on generating and
validating such infeasible candidate subtraces. For an example
in our experiment, delta debugging takes 27 minutes for an
event trace with only 617 events. Hierarchical Delta
Debugging (HDD) [9] takes advantage of the tree structure of
inputs (e.g., XML) to speed up delta debugging. However,
HDD does not work in our situation due to the lack of similar
tree-like structure in event traces in client-side JavaScript
applications.

In this paper, we propose a novel approach, EvMin, to
effectively and efficiently select minimal failure-inducing
events from an event trace that reveals a failure. We observe
that, for a candidate event subtrace that may reproduce the
original failure, the shared variable (i.e., the variable can be
accessed across events) usage information of each event, such
as the existence of its accessed DOM structure and the types
of its accessed variables, should stay the same as the
corresponding information in the original trace. Otherwise,
new syntactical failures (e.g., ReferenceError and TypeError)
other than the original failure may occur. We consider this
shared variable usage information about an event as its
context. By requiring that each event in the candidate subtrace
has the compatible context with its corresponding one in the
original trace, EvMin can avoid exploring syntactically
infeasible subtraces that may produce unexpected failures.
Thus, EvMin can speed up delta debugging greatly.

We have implemented our approach as a prototype tool in
pure JavaScript. Our tool enables easy integration into front-
end source code (by switching a proxy in the browser), and
avoids modifications to a JavaScript engine. Our evaluation
on 10 real-world JavaScript application failures shows that
EvMin can effectively find the minimal failure-inducing
events. Compared with delta debugging, EvMin explores 72%
fewer candidate subtraces and takes 84% less time on average.

* Corresponding author

In summary, the contributions of this paper are as follows:
• We propose a context-based approach to effectively

and efficiently perform event trace reduction in client-
side JavaScript applications. Our approach can avoid
exploring many syntactically infeasible candidate
event subtraces that delta debugging does not.

• The evaluation on 10 real-world JavaScript
application failures shows that our approach can
effectively and efficiently remove failure-irrelevant
events.

The remainder of this paper is organized as follows.
Section II presents our motivation and challenges. Section III
introduces our approach and Section IV describes the
implementation details. Section V evaluates EvMin
experimentally. Section VI and VII discuss the limitations of
EvMin and introduce related work, respectively. Section VIII
concludes this paper.

II. MOTIVATING EXAMPLE

In this section, we illustrate our motivation and approach
overview using a real-world JavaScript application failure.

A. Example

Fig. 1 shows a client-side JavaScript application that is
used to manage shopping lists. In Fig. 1, a new list can be
added by clicking the Add New List button (in the bottom left
of Fig. 1a) and a dialog will show up for adding a new list
(Fig. 1b). A new item can be added to a given list by clicking
the Add button (in the bottom right of Fig. 1a) and a dialog
will show up for adding a new item (Fig. 1c). Fig. 2 shows the
simplified source code for this example. The event handler
onload (Lines 3-6) will be called when the page is loaded,
onAddNewList (Lines 16-19) will be invoked when the Add
New List (in Fig. 1a) button is clicked, onSaveList (Lines 21-
33) will be invoked when the Save button in the dialog in Fig.
1b is clicked, and onSaveItem (Lines 35-49) will be invoked
when the Save button in the dialog in Fig. 1c is clicked.

Items with duplicated names are not allowed in the same
shopping list for this application. Otherwise, an exception will
be thrown (Line 43 in Fig. 2). Fig. 3 shows a real event trace
that triggers this failure. This event trace contains 31 events.
However, only the following 12 events (in bold font in Fig. 3)
are necessary to trigger this failure: event 0 (action0) that
initializes a shopping list when the initial page is loaded,
events 1-3 (action1) that create a list with name “books”,
events 14-17 (action3) that add a new book named “book1” to

the list “books”, and events 27-30 (action6) that add a book
named “book1” again. In this event trace, action3 and action6
add items with the same name “book1” to the shopping list
“books”. All the other events are failure-irrelevant, such as
events 18-21 that add an item with a different name (e.g.,
“book2”) to list “books”. The irrelevant events randomly
interleave with the failure inducing events. We aim to find the
minimal subtrace that reproduces the failure.

B. Existing Solutions

Given an event trace ߬ that raises a failure f, delta
debugging [5][8] attempts to partition the event trace	߬ into a
number of candidate subtraces and validates each subtrace as
well as its complement subtrace. If a subtrace can raise the
failure f, the algorithm treats the failure-triggering subtrace as
trace ߬ and repeats the same procedure until there is no smaller
subtrace that triggers the failure f. Delta debugging can
achieve nearly binary search complexity in the best case. For
the 31 events in Fig. 3, delta debugging generates 69 candidate
subtraces for isolating the minimal failure-inducing subtrace.

We find that delta debugging generates and tests many
infeasible candidate subtraces that cannot reproduce the
failure. For each event in the given trace ߬, it usually depends
on some preconditions, such as the existence of a DOM
element. If these preconditions are not satisfied, the generated
subtraces may be infeasible, and trigger failures different from
the original failure f. For our example in Fig. 3, event 4
depends on event 0 since its accessing DOM elements are
loaded by event 0. It also depends on event 3, because event 3
registers the event listener onclick (Line 28) that event 4
triggers. Delta debugging does not care about such
preconditions and may generate an infeasible trace {event 4-
30} that introduces a new TypeError since the accessed DOM
element is not loaded. Even if the DOM elements exist, event
4 cannot be triggered because event 3 that registers the event
listener for event 4 is not selected.

Dynamic slicing approaches [10][11][12][13] adopt the
def-use information to trace the data dependences and
compute failure-relevant events by keeping all events that the
failing event depends on. However, these approaches cannot
remove all failure-irrelevant events. For example, the
irrelevant event 21 cannot be removed because event 21 is
depended by the failing event 30 (i.e., event 30 reads the value
curList.totalCount written by event 21 at Line 46 in Fig. 2).
Our approach differs from dynamic slicing approaches in that
we can remove the failure-irrelevant events even if they are
depended by the failing event, such as event 21.

(a) main page (b) add a new list (c) add a new item

Fig. 1. Shopping list application.

C. Our Approach

To effectively and efficiently find the minimal failure-
inducing events for an event trace that triggers a failure, our
approach utilizes the variable usage context of each event to

guide the generation of candidate event subtraces. If an event
e is selected in a candidate event subtrace, we require that the
context of each event in a candidate event subtrace should
keep the same with the context of its corresponding event in
the original event trace. In this way, we avoid generating
syntactically-infeasible candidate event subtraces that delta
debugging does not. On the other hand, we relax the strict
program dependence in dynamic slicing and use the variable
usage context to generate shorter subtraces.

To reach our purpose, two technical problems should be
addressed first.

Problem 1: What information can be used as an event’s
context? How can we generate syntactically-feasible
candidate subtraces?

We observe that many subtraces generated by delta
debugging contain some events whose required shared
information is not available, e.g., DOM elements. Thus, we
use the shared variable usage information to model an event’s
context. For example, if an event’s handler accesses some
shared variables in the original trace, then we require that
these shared variables are also accessible for its corresponding
event in the reduced event trace. Thus, the new generated trace
will not raise a TypeError.

We use the following variable information to model an
event’s context: the existence of required shared variables,
shared variables’ declaring scope and types. Note that, we do
not care about these variables’ concrete values, since concrete
values may not affect the occurrence of the failure. For
example, the variable curList.totalCount is accessed by event
30, event 21 and event 17. We observe that if we delete event
21, then the variable curList.totalCount in event 30 will read
from event 17. The concrete value of curList.totalCount does
not affect the occurrence of the failure.

Although some concrete values indeed affect the
occurrence of the failure, it is challenging to analyze what
concrete values can trigger the failure. Thus, we adopt the idea

 1. //shoppingLists is a shared variable used to store all lists.
 2. var shoppingLists;
 3. window.onload = function(){
 4. shoppingLists = new ShoppingLists();
 5. render();
 6. }

 7. /* Show the adding new list dialog*/
 8. function showEditListDialog(){
 9. document.getElementById(‘newlist-form').style.display ='block';
 10. }

 11. /* Hide the adding new list dialog*/
 12. function hideEditListDialog(){
 13. document.getElementById(‘newlist-form').style.display = ‘none';
 14. }

 15. /* Event handler for adding a new list */
 16. function onAddNewList (){
 17. resetForm(); //Reset the form fields in the dialog
 18. showEditListDialog(); //Show the dialog
 19. }

 20. /* Event handler for saving a new list*/
 21. function onSaveList (){
 22. var listName = getById(‘listName’).value;
 23. var newList = new ShoppingList(listName);
 24. shoppingLists.pushList(newList); // Add newList
 25. hideEditListDialog();
 26. //Render the new created list to list pane
 27. newListView = createListView(newList);
 28. newListView.onclick = function(){
 29. var items = shoppingLists.getList(newList.name).getItems();
 30. renderItemsPane(items);
 31. }
 32. appendToListsPane(newListView);
 33. }

 34. /* Event handler for saving new item*/
 35. function onSaveItem (){
 36. var itemName = document.getElementById(‘name’).value;
 37. var boughtCount =document.getElementById(‘count’).value;
 38. var listName = document.getElementById(‘item_list’).value;
 39. var item = new Item(itemName, boughtCount);
 40. // Save new created item and update the screen
 41. var curList = shoppingLists.getList(listName);
 42. if(curList [item.name]!=null){
 43. throw new Error(“duplicated item!”);
 44. }
 45. pushItem(item);
 46. curList.totalCount += boughtCount;
 47. hideEditItemDialog();
 48. render();
 49. }

 50. /* Define class ShoppingList */
 51. function ShoppingList (){
 52. this.totalCount = 0;
 53. …
 54. }

Fig. 2. Code snippet for the shopping list application.

Action Event Event handler
0. Page load 0. Load the page onload (Line 3)

1. Add list
named "books"

1. Click Add New List button onAddNewList
2. Fill in the list name
3. Click Save button onSaveList

2. Other actions
4. Click list “books”
5. Click list “books”

onclick (Line 28)
onclick (Line 28)

…//changing settings

3. Add item
named "book1"
to list “books”

14. Click Add button onAddItem
15. Fill in the name of new item
16. Fill in the count of new item
17. Click Save button onSaveItem

4. Add item
named "book2"
to list “books”

(Repeat 14~17)
18. Click Add button onAddItem
19. Fill in the name of new item
20. Fill in the count of new item
21. Click Save button onSaveItem

5. Other actions …

6. Add item
named "book1"
to list “books”

(Repeat 14~17)
27. Click Add button onAddItem
28. Fill in the name of new item
29. Fill in the count of new item
30. Click Save button onSaveItem

Fig. 3. A real event trace from ShoppingList application. It triggers a failure
because two items with the same name are added into the same list.

of replaying the subtrace like delta debugging, and check
whether the expected failure occurs.

Problem 2: For client-side JavaScript applications, how to
determine the context of each event in an event subtrace?

To handle problem 1, we need to determine the context of
each event in a subtrace. Specially, for client-side JavaScript
applications, it is challenging to handle the DOM variables
(DOM is a tree-structure representation of a HTML page).
DOM is a built-in object in the browser, and can be regarded
as a variable with type object. However, there are many native
APIs that operate the DOM elements or attributes, such as
appendChild, remove, and setAttribute. An operation on a
DOM element may indirectly affect another DOM element.
Thus, it is challenging to decide the context of a DOM element
(e.g., whether a certain DOM element exists). To handle this,
we determine the compatible context of a DOM element by
searching a DOM state and checking if it contains the
necessary DOM elements.

III. APPROACH

Given an event trace that leads to a JavaScript application
failure, our approach tries to identify a minimal event
subtrace, which can still reproduce the failure. Fig. 4 shows
the overview of our approach. The input of our approach
includes: (1) The original event trace that triggers a failure.
The event trace can be collected by existing event-based
record-replay tools, such as Mugshot [1], which records low-
level events according to the DOM specification [14]. (2)
Failure assertions. We require developers to provide the
assertions that describe the symptom of the original failure,
just as similar measurements do [5][10][15], so that we can
tell whether the original failure is reproduced.

The output of our approach is a failure-reproducible event
subtrace. We consider an event subtrace as failure-
reproducible (i.e., it can reproduce the failure) only if the
failure assertions are satisfied during the replay of the event
subtrace.

Our approach consists of three phases. First, we
instrument the source code and replay the original event trace
to collect the context information for each event (Section A).
Second, we generate a candidate event subtrace that is likely
to be failure-reproducible. We transform the candidate event
subtrace generation into a constraint solving problem (Section
B). Specifically, we require that, for a candidate event
subtrace, all the events have compatible contexts with their
corresponding ones in the original event trace. Third, we
check whether the candidate event subtrace is failure-
reproducible. We repeat steps 2 and 3 until a failure-
reproducible event subtrace is found (i.e., the failure is
reproduced; Section C).

A. Collecting Context Information

As mentioned earlier in Section II.C, we use the event’s
variable usage information to model its context. Thus, we
need to collect runtime memory access information. We use
Fig. 5 to explain how memory is accessed for each event. An
event handler may access many variables, each accessed
variable can be denoted as a tuple <variable name, accessing
type, value type>. The variable name denotes the name that is
used to access the variable (e.g., v1). The accessing type can
be declare (D), write (W), and read (R). A variable can be
declared, read and written multiple times. Since JavaScript is
a dynamically typed programming language, we use the value
type to denote the type of a variable during execution. The
type information of a variable can be obtained by the typeof
operator in JavaScript.

If two operations use the same variable name, they access
the same variable. We name the variables that can be accessed
by at least 2 events as shared variables. For example, in Fig.
5, variable v1 is accessed by ei and ej, and thus v1 is a shared
variable. In Fig. 2, variable shoppingLists declared in Line 2
is a shared variable, and it is accessed by events {3, 14, 17, 18,
21, 27, 30}. Note that, the variable aliases can complicate our
analysis, we will explain the solution in Section IV.B.

We collect the following context information during the
execution of the original event trace. (1) For each event e, we
collect its shared variable use set (i.e., what variables it uses).
(2) For each shared variable v, we collect the event that
declares v. (3) For each read of shared variable v or field
access that is reachable from v, we collect its value type and a
history of events that write to v. The value types can be:
“undefined”, “number”, “string”, “boolean”, “function”, and
“object”. Specially, for a DOM object, we mark it as “DOM”
type instead of the general type “object”; for an object with
value null, we mark it as “null” type. Note that, the “object” is
a general type. Shared variables in “object” type can have
complicated data structure, e.g., it may contain multiple fields,
and the fields may be in “object” type again. Regarding this,
we also collect the type information of fields that are reachable
from the shared variable. To simplify presentation in this
paper, we consider that a reachable field f from the shared
variable o as a shared variable, and denote it as variable o.f.

B. Constraints for Candidate Subtraces

Given an event trace ߬ = {݁ଵ, 	݁ଶ	, … , ݁௡} that leads to a
failure f, our approach aims to generate a minimum event
subtrace ߬, of ߬ which is failure-reproducible. The trace ߬,
should be as short as possible. For each event in the event trace ߬, we use a bit variable ݏ௜ to denote whether its corresponding

Fig. 4. Approach overview.

Collect
information

Generate
subtrace

Validate
subtrace

Original
trace

Reduced
trace

Candidate
Failure-

reproducible

Non-reproducible

Failure assertions

Point-to

v1, W, Number v2, R, Object …
Accessed variables of ei

v1, R, Number …
Accessed variables of ej

Same variable v1

Memory

Point-to

Fig. 5. Event memory access model. Events ei and ej access the same
variable with the same name v1 (ei writes v1, ej reads v1).

event ݁௜ is selected by ߬,. If ei is selected by ߬,, then ݏ௜ = 1,
otherwise, ݏ௜ = 0. Then, the constraint to select an event ݁௜ is ݐ݈ܿ݁݁ݏ(݁௜) ≡ ௜ݏ) == 1)

The trace generating formula ߔ is constructed by a
conjunction of three sub-formulas: ߔ(݊) ≡	߮௖	⋀	߮௟(݊)	⋀	߮௘. Specifically, ߮௖ requires that each event in ߬, has the compatible context with its corresponding event in
the original trace ߬ . ߮௟(݊) restricts the length of ߬, , and
requires that only n events can be selected. ߔ௘ requires that the
failure events must be selected. We introduce these constraints
and their encodings in detail in the following subsections.

1) Compatible Context Constraint (߮௖)
Since some events in the original event trace may be

deleted, the context of an event in a candidate subtrace may
be different from its corresponding one in the original event
trace. For an event ei in the original event trace, if it is selected
(marked as ei’) in the candidate event subtrace, we say that ei
and ei’ have compatible context if the following two
conditions are satisfied: (1) All the variables used by ei and ei’
are declared in the same scope with respect to their
corresponding traces (߮௖ଵ). (2) All the variables used by ei and
ei’ have the same type with respect to their corresponding
event traces (߮௖ଶ). We use compatible context constraint (߮௖)
to make sure that all corresponding events in the original event
trance and a candidate subtrace have compatible context.
Formally, (߮௖) is ߮௖ ≡ ߮௖ଵ ∧ ߮௖ଶ

The formula ߮௖ଵ is designed to guarantee the first
condition. Specifically, it requires that if an event ݁ is
selected, then for each shared variable used by ݁, its declaring
event should also be selected. In JavaScript, a variable can be
explicitly declared using the keyword var. For example, every
time the statement “var v” is executed, we regard it as a
declaration to the variable v. Let ݁ݏݑ(݁) be the set of variables
used by ݁ (ݒ)ܿ݁݀	 , be the event that declares variable ݒ	 .
Formally, ߮௖ଵ is ߮௖ଵ ≡ ⋀௘∈ఛ(ݐ݈ܿ݁݁ݏ(݁) ⇒ ⋀௩∈௨௦௘(௘)((ݒ)ܿ݁݀)ݐ݈ܿ݁݁ݏ)	

For example in Fig. 3. Event 4 reads variable newList
(Line 29 in Fig. 2) that is declared by event 3 (Line 23 in Fig.
2), so we build a constraint ݐ݈ܿ݁݁ݏ(݁ସ) ⇒ .(ଷ݁)ݐ݈ܿ݁݁ݏ

JavaScript has static scoping, so in some cases, the
declaration of a variable during the execution of an event
handler may be out of scope in all later event handlers. For
example, in Fig. 2, the event handler (onclick, Line 28) of
event 4 declares the variable items (Line 29) and then uses
items later (Line 30). The event handler of event 5 performs
the same operations. However, the two variables items used in
events 4 and 5 are different. Thus, we should not build
constraints among these two events.

The formula ߮௖ଶ is designed to guarantee the second
condition, which ensures that each variable reads values in the
same type as the one in the original trace, although their exact
value may be different. Specifically, ߮௖ଶ requires that if an
event ݁ is selected, then for each variable v used by event ݁, at
least one of the events that write to v in the same type is
selected. For a variable v that is read by event e, we use ࢋ)࢙࢚࢔ࢋ࢜ࡱ, ࢜) to denote the type-compatible events of v,
which write to v in the same type. Formally, ߮௖ଶ is

߮௖ଶ ≡ ⋀௘∈ఛݐ݈ܿ݁݁ݏ(݁)⇒ ⋀௩∈௨௦௘(௘)(⋁௘ೕ∈ா௩௘௡௧௦(௘,௩)ݐ݈ܿ݁݁ݏ(௝݁)) ݏݐ݊݁ݒܧ(݁, (ݒ is calculated by comparing the collected
type information. We give more details about how we obtain ݐ݊݁ݒܧ(݁, .for JavaScript and DOM variables in Section IV (ݒ

Consider our example in Fig. 3. For general variable
usage, we build a constraint s (ଷ଴݁)ݐ݈ܿ݁݁ ⇒ ((଴݁)ݐ݈ܿ݁݁ݏ)
since event 30 read variable shoppingLists, which is modified
by event 0. Similarly, we build a constraint ݐ݈ܿ݁݁ݏ(݁ଷ଴) 	((ଶଵ݁)ݐ݈ܿ݁݁ݏ	⋁	(ଵ଻݁)ݐ݈ܿ݁݁ݏ	⋁	(ଷ݁)ݐ݈ܿ݁݁ݏ)⇒ . First, the field
curList.totalCount that event 30 read at Line 46 is modified
by event 3 (which modifies this field at Line 52 when a new
shopping list is created at Line 23). Second, events 17 and 21
(which modifies this field at Line 46 when a new item is added
to the current shopping list.). For DOM variable, we build a
constraint ݐ݈ܿ݁݁ݏ(݁ଷ) ⇒ (ଵ݁)ݐ݈ܿ݁݁ݏ) 	∧ ((ଶ݁)ݐ݈ܿ݁݁ݏ	 , since
event 3 read the DOM elements (i.e., newlist-form at Line 9
and listName at Line 22) that are modified by events 1 or 2.
Similarly, for event 30, we build a constraint ݐ݈ܿ݁݁ݏ(݁ଷ଴) ⇒൫	ݐ݈ܿ݁݁ݏ(݁ଶ଻) ∧ (ଶ଼݁)ݐ݈ܿ݁݁ݏ ∧ ൯ since it read the(ଶଽ݁)ݐ݈ܿ݁݁ݏ
DOM elements (i.e., name at Line 36, count at Line 37) that
are modified by events 27, 28 and 29, respectively.

2) Length Constraint (߮௟(݊))
Since the length of the failure-related events is usually

short [16][17], we generate candidate event subtraces from
short to long. Length constraint is used to restrict the number
of events that can be selected. Let ݊ be the required specific
length of candidate event subtraces. Formally, ߮௟(݊) is ߮௟(݊) ≡ (∑௘௜∈த	ݏ௜) == ݊

3) Failure Event Constraint (߮௘)
Failure event constraint (߮௘) is used to select the erroneous

events that trigger the failure f. By selecting the erroneous
events, we make sure only the events that affect the contexts
of the erroneous event are selected. One of the following
information is required to be given by the developers. (1) The
event that the failure lies in, e.g., the event that throws an
exception. (2) Assertions about the failure symptoms.
Similarly, let ܽݏݐݎ݁ݏݏ be the set of events that contain
assertion statements, and fails be the set of failure events.
Formally, ߮ୣ is ߮௘ ≡ (ݏ݈݂݅ܽ)ݐ݈ܿ݁݁ݏ		⋁		(ݏݐݎ݁ݏݏܽ)ݐ݈ܿ݁݁ݏ
C. Event Subtrace Generating and Validating

Our approach iteratively generates candidate event
subtraces until a failure-reproducible event subtrace is found.
The event subtrace generation algorithm is as follows. (1) We
resolve ߔ(݊) using a SAT solver (e.g., z3 [18][19]). Initially,
n is 1. (2) There may be multiple solutions for ߔ(݊) (i.e., there
may be multiple candidate event subtraces with length n).
Thus, we need to generate all possible solutions for length n.
Unfortunately, a general SAT solver only provides a single
solution for a given constraint. We use the technique similar
as [20] to recursively find all the solutions. For each solution ݏ that is provided by the SAT solver, we create a blocking
clause ܿ to constrain that the new solution ݏ, is different from ݏ . By resolving the constraint (ߔ(݊)⋀	ܿ), we get a new
solution. This process is repeated until there is no solution. (3)
If there is no solution, increase n to n+1 and then go to step 1.

Example. Consider our example in Fig. 3. After we
generate all constraints, we feed the constraint ߔ(݊) (n is
initially 1) to the constraint solver. There is no solution, since
there is no 1-length-subtrace that can satisfy ߔ(݊). Until n is
increased to 8, we can get the first solution: events 0-3 and 27-
30 (n=8). However, this solution cannot reproduce the failure.
We continue the above process and get another solution event
0-3, 14-17 and 27-30 (n=12), the process is terminated since
this new solution can reproduce the failure.

Discussion. Our event subtrace generation process is
similar to delta debugging [5][8]. The key difference is how
to generate candidate event subtraces. Delta debugging
iteratively and blindly (i.e., without knowing the context of an
event) cuts the trace to subtraces with some granularity and
tries to validate them. Our approach can accelerate this
process due to the following two reasons: (1) Among the
concerned events, we guide the subtrace generation by
selecting events that have the compatible contexts with the
ones in the original trace. So that we can generate shorter
subtraces quickly. (2) Our approach does not search the whole
trace. We only care about the events that affect the contexts of
the erroneous events.

IV. IMPLEMENTATION

Our proposed approach is implemented as EvMin for
client-side JavaScript applications. It is also applicable for
other kinds of event-driven applications, such as Android or
Java GUI. Note that, the compatible context constraints may
not be the same for other kinds of event-driven applications.
EvMin consists of four components: record/replay,
information collector, trace generator and trace validator.

A. Record and Replay

We adopt a similar approach as Mugshot [1] to implement
record and replay. Mugshot can record low-level events as an
event trace when users browse a web site, and replay the
execution based on a given event trace. It handles the non-
deterministism, such as random values, system times and
dynamic data that are retrieved from the server, so that it can
replay the original trace deterministically.

B. Information Collector

The information collector is a proxy server that
instruments the source code. It uses the record and relay
component to replay the recorded event trace, and collect
context information to form the constraints (Section III.B).
We explain how we collect the context information for each
shared variable v as follows.

The event that declares v. We intercept all statements that
declare variables using keyword “var”. For example, every
time the statement “var v” is executed, we regard it as a
declaration to variable v. If v is declared by event e, then
dec(v) is mapped to e. Note that, although we simply treat a
field f in an object variable o as a new variable, we only
consider read and write to f, and do not generate dec(f) for f.

The type of v. Obtaining type information is
straightforward. We intercept the read and write operations to
shared variables and record their value types. Specially, if the
value is an instance of DOM object, we mark it as “DOM”

type, and if the value of an object is null, we mark it as “null”
type.

A history of events that modify v. For each variable v, we
maintain a list of events that have written to v, so that we can
find out the type compatible events for v.

The use set of event e. Every variable that is read by the
handler of event e is added to use(e).

Alias analysis. Obtaining the above information becomes
complicated in the presence of aliases in JavaScript. When
computing the events that define or modify v, we need to
consider possible aliases that may refer to the same object in
memory. The prevalent use of aliases and dot notation (e.g.,
accessing field foo of object o: o.foo) for accessing a variable
in JavaScript often complicates the issue of code
comprehension. Static analysis techniques often ignore this
issue [21]. However, it is not a big issue for dynamic analysis.
For variables accessed by names, we maintain runtime scopes
(variables are stored in different scopes according to where
they are defined). We denote each access of such variable v as
(object, name) where the object is the scope of v and name is
the accessed name of v. For a variable accessed by dot
notation (e.g., o.foo), we use the same denotation (object,
name) where object is the object reference (e.g., o) and name
is the field (e.g., foo) that is accessed. When judging if two
operations access the same variable, we check if their objects
point to the same memory address and their names are equal
at runtime.

C. Trace Generator

Constructing constraints. Trace generator automatically
encodes context information into constraints according to
Section III.B. It is straightforward to construct these
constraints. However, it is challenging to obtain the type-
compatible events (i.e., ݏݐ݊݁ݒܧ(݁, for DOM variables. In ((ݒ
the following, we present how we obtain type-compatible
events for general JavaScript variables and DOM variables,
respectively. For any read of v in event ei.

1) v is a general JavaScript variable
In this case, we directly compare the type information.

Specifically, for any earlier event ݁௞ which writes to ݒ, if the
type of v in event ek is the same as the type of v in event ei,
then ݁௞ is included in ݏݐ݊݁ݒܧ(݁, .(ݒ

2) v is a DOM variable
DOM variables are operated by native APIs. For example,

using appendChild API to append a child to a DOM element,
and remove API to remove a DOM element. The usage of
these APIs are complicated, for example, the same DOM
element can be operated via several ways, such as
getElementbyId, getElementbyClass, querySelector or
directly reading the children of its parent. Thus, analyzing the
type-compatible modifications to a DOM element is not easy.
Simply treating all events as type-compatible is impractical.
Instead, our observation is that the DOM is changed to a new
state after executing each event. If every accessed DOM
element ele in event ei also exists in the result DOM state
updated by event ek (k < i), then ek is a type-compatible events
with respect to ele.

We use Fig. 6 to explain how it works. Suppose that there
is an event trace that contains 4 events: Event e1 loads the

initial DOM tree, event e2 adds an element c to the DOM tree,
event e3 does nothing to the DOM tree, and event e4 accesses
the added DOM element c. For the original trace {e1, e2, e3,

e4}, we cache the DOM state after the execution of each event.
Suppose that the cached DOM states are {d1, d2, d3} before the
execution of e4. Under the current DOM state, its accessed
DOM element c is available. If we determine type-compatible
events of c, they would be e2 and e3, since their resulting DOM
states (i.e., d2 and d3) contain the DOM element c. According
to this type-compatible event information, our constraints may
let e4 read from e2 and generate subtrace1: {e1, e2, e4}. This
subtrace is feasible, since the existence of the DOM element
accessed by e4 keeps the same as the original trace.

Generally, we use the following approach to obtain the
type-compatible events for a DOM access. DOM states are
cached as ܦ	 = 	 {݀ଵ …	݀௜ିଵ} before the execution of event ݁௜. ݀௜ିଵ is the DOM state after the execution of event ݁௜ିଵ and
before the execution of event ݁௜. When executing event ݁௜, we
intercept all the operations that perform on the DOM. For each
intercepted DOM operation, we calculate the selector of
accessed DOM element ele (see next paragraph for the
algorithm of getSelector). And then we use the selector to
select DOM elements on each cached DOM state in D, and
compare ܴ௞ and ele (ܴ௞ is the selected element on ݀௞ (1 ≤݇ < ݅)). If the following conditions are satisfied, then ݁௞ is
regarded as a type-compatible event for DOM element ele:
both ܴ௞ and ele are empty or neither of them is empty. Note
that, only comparing the existence of a DOM element is
enough. If the accessed DOM element has complicated DOM
structure, then as long as its child elements are accessed, our
approach is able to intercept that operation and resolve the
existence of the child elements.

We need to calculate a selector s for a DOM access in
DOM state so that we can check the existence of the accessed
element with the selected DOM element on each cached DOM
state. Our algorithm (getSelector) to calculate a selector which
keeps enough information to precisely locate a DOM element.
The algorithm is described as follows: (1) If the DOM access
API is querySelector, the algorithm returns the selector
directly. (2) If the DOM access API is getElementById,
getElementsByClass, or getElementByTagName, we calculate

the XPath [22] of current element as shown in (3), and also
record corresponding id, class or tagName information. (3)
Otherwise, DOM is not accessed by common APIs. In this
case, we calculate the XPath of the current element, but ignore
the index information since it easily makes a selector broken.
For example, the DOM access
document.getElementById(‘name’) (Line 36 in Fig. 2) is
calculated as //input[@id=’name’]. The //input is the
calculated XPath according to (3), and the [@id=’name’] is
the id information of the element according to (2).

Our DOM model is not completely precise (it does not
always generate feasible event traces). For example, our
constraints may let e4 read from its type-compatible event e3,
and generated subtrace2: {e1, e3, e4}. If we run subtrace2, we
will find it infeasible, since the DOM element accessed by e4
does not exist. This imprecision may cause our approach to
explore more candidate subtraces. We observe that event e3
has nothing to do with DOM element accessed by e4 and thus
there is no need to select e3. Specifically, we further make the
following improvement for the DOM model: For each DOM
element accessed by event ei, we record the history of events
E that update it. Only the events that are in E can be regarded
as type-compatible events of ei.

Resolving constraints. We use z3py, a python front end
for constraint solver z3 [18][19], to encode our constraints
described in Section III.B to z3 and retrieve the result.

D. Trace Validator

Since we do not care about the concrete values of each
shared variable, the candidate event subtraces we generate
may not be able to reproduce the failure. Therefore, as delta
debugging does, our trace validator validates a candidate
subtrace by running it in a browser and observes if the failure
can be reproduced. The trace validator starts a browser and
uses the record-replay component to replay a candidate
subtrace and checks if the candidate subtrace is failure-
reproducible (i.e., the failure assertions are satisfied). It
terminates if it can trigger the failure. Otherwise, it invokes
the trace generator to obtain the next candidate subtrace. Our
constraints avoid generating infeasible traces in most cases.
But if a generated subtrace is infeasible, we do not care about
if the subtrace can be replayed properly, and just dispatch the
recorded events and check if the assertions are satisfied.

V. EVALUATION

We evaluate EvMin by answering the following three
research questions:

RQ1: Can EvMin effectively remove failure-irrelevant
events?

RQ2: What is the performance of EvMin?
RQ3: How is EvMin compared with existing approaches,

e.g., delta debugging?

A. Experimental Subjects

We use two datasets to evaluate EvMin:
Dataset-1. We reused the subjects that were used by the

delta debugging approach [5]. There are totaling 30 subjects
in their project. We removed a subject if it satisfied one of the
following conditions: (1) The number of failure related events

d1 a

b

e2
d3 a

b c

e4: access

✔
d2 a

b c

e3 Original
trace
{e1,e2,e3,e4}

e1

d1 a

b

e
2
 e4: access

✔
d2 a

b c

subtrace1
{e1,e2,e4}

e1

c

c

d1 a

b

e3 e4: access

✗

d3 a

b

Subtrace2
{e1,e3,e4}

e1 c

Fig. 6. An example for resolving type-compatible event for DOM variable.
Event e1 loads the initial DOM tree, event e2 adds an element c to the DOM
tree, event e3 does nothing to the tree, and event e4 accesses the added DOM
element c.

Updated DOM element by corresponding event

(including the failure event) is 1. We regard such cases as non-
representative since the developers can diagnose the failure by
just inspecting the single erroneous event. We prior to
selecting complicated failures that are usually caused by
multiple events. (2) The failures cannot be reproduced.
Finally, we obtained 12 failures along with their failure
revealing traces.

The upper part in Table I shows the details about the 12
failures. The involved applications are relatively small and
one might argue that they do not reflect the typical JavaScript
application failures. However, they covers different types of
failures and were used by the existing delta-debugging
approach [5]. Further, we can evaluate EvMin and compare
EvMin with the existing approach on this dataset.

Dataset-2. In order to evaluate EvMin on real-world
failures, we chose another 10 real-world failures from GitHub
that were used by JSTrace [10]. These JavaScript application
failures were selected by the criteria that they are marked as
bugs, written in JavaScript language, have at least two
comments and explicit reproducing descriptions. The lower
part in Table I shows the details of these selected 10 real-world
failures, in which, Size denotes the file size of JavaScript
source code, and Popularity denotes the numbers of stargazers
of the project. These involved applications are designed for
different purposes and functionality, and have high popularity
(weighed by the number of stargazers in GitHub). These
failures are complex (multiple steps are necessary to trigger
the failures).

To get the failure revealing traces for these 10 real-world
failures, we first used their applications for a while, and then

followed the failure reproduction steps in the bug reports to
reproduce the failures. Then we used our record and replay
component to record these traces. To evaluate the reduced
event traces, we manually identified the expected minimal
failure-inducing events in the original trace that are critical to
trigger the failure.

B. Experimental Setup

To answer RQ1, we evaluated EvMin on Dataset-1 and
Dataset-2, respectively. We check how close the final
solutions are to the expected minimal events and give an
analysis to the experimental result.

According to our preliminary experiment, we found that
the reduced event traces of EvMin are very close to the
minimal failure-inducing trace, but not minimal. We further
dug into why some irrelevant events cannot be removed. The
reason is as follows: The use of native JavaScript calls can
cause our collected history set of events that modifies a
variable incomplete (the earlier part is missing), thus our
compatible context constraint cannot find an event and some
irrelevant events are not removed. We have fixed this case by
modeling most commonly used APIs, but not all of them. To
further address this issue, we propose an optimized EvMin, in
which we further use delta debugging to remove the remaining
irrelevant events after we have used EvMin. In the last, we
evaluate the optimized EvMin by checking whether it can
reduce the original trace to minimal.

To answer RQ2, we evaluated how many subtraces EvMin
has to explore until a failure-reproducible one is found. In
addition, we evaluated the time taken to find the final solution.
Since EvMin first collects context information, and then
generates one candidate subtrace each time and validates it,
the total time is comprised by context collecting, trace
generating, and trace validating. We answer this question by
evaluating the total time. We give statistics on the 3 parts
respectively and explain the experimental result.

To answer RQ3, we compared EvMin with delta
debugging in terms of the number of generated subtraces, the
length of reduced trace and time. To compare with delta
debugging [5], we implemented their algorithm and evaluated
it on our experimental subjects.

Our experiments were performed on a 64-bit machine with
8G memory. In Table II and Table III, category Original trace

TABLE I. EXPERIMENTAL SUBJECTS

StackOverflow failures (Dataset-1)
ID Application LOC Error type
1 CanadaLong 105 Incorrect values
2 OnlineShoppingLong 30 Cannot add items to cart
3 AgeCaculate 114 Invalid calculation
4 CarRental 125 Unresponsive DatePicker
5 InsuranceLong 93 Form submitted with empty field
6 StudentInfo 92 Invalid input
7 Airport 44 Invalid input
8 BestCars 38 Invalid input
9 Game 68 Faulty button click
10 Numbers 118 Incorrect calculation
11 Patient form 93 Form submitted with empty field
12 Patient form 74 Invalid input

Real-world failures (Dataset-2)
ID Application Size Popularity
13 Chart.js-1[39] 105K 14,803
14 Chart.js-2[40] 105K 14,803
15 HandsonTable[41] 4.7M 4,989
16 JPushMenu[42] 1.5M 134
17 Todolist[43] 312K 19
18 FullPage[44] 882K 9,518
19 Editor.md[45] 257K 530
20 My-mind[46] 223K 1,449
21 Foundation-sites[47] 576K 22,885
22 Reveal.js[48] 424k 26,893

TABLE II. RESULT ON DATASET-1

ID
Original trace Delta debugging EvMin

#All#Expected#Reduced#Subtrace#Reduced#Subtrace
1 17 2 2 7 2 2
2 10 2 2 9 2 2
3 9 3 3 6 3 1
4 11 2 2 6 2 1
5 10 2 2 6 2 1
6 9 2 2 10 2 1
7 6 2 2 10 2 2
8 4 2 2 3 2 2
9 13 2 2 14 2 1

10 8 2 2 12 2 1
11 8 2 2 11 2 1
12 9 2 2 12 2 1

Avg. 8.8 1.3

shows the information about the original trace that reveals a
failure. The columns All and Expected represent the length of
the original trace and expected minimal number of events to
reproduce the failure. The category Delta debugging, EvMin,
EvMin with DD shows the reduction result of delta debugging,
EvMin, and optimized EvMin with delta debugging,
respectively. The corresponding columns Reduced, Subtrace,
and Time present the length of reduced result, the number of
subtraces to explore the solution and time needed.

C. Results and Analyses

1) RQ1: Can EvMin effectively remove failure-irrelevant
events?

Table II shows EvMin’s reduction result on Dataset-1. As
we can see, EvMin can reduce the trace to minimal, which
means all the irrelevant events are removed. Since most of
failures in Dataset-1 have simple data flow and most of the
events are user-input events, EvMin performs well.

The right part of Table III shows EvMin’s reduction result
on Dataset-2. The length of reduced event traces is only on
average 2.1X of the minimal failure-inducing trace.

EvMin with DD. EvMin alone can remove most of the
irrelevant events. The remaining irrelevant events can be
further removed by delta debugging. The EvMin with DD
column in Table III shows how many additional subtraces,
additional time and total time needed to reduce the trace to
minimal. As a result, optimized EvMin with DD can remove
all irrelevant events with little cost.

2) RQ2: What is the performance of EvMin?
Event trace reduction. We use the number of subtraces to

evaluate how many traces EvMin explores before the failure-
reproducible subtrace is found. The Subtrace column under
EvMin category in Table II shows this result on Dataset-1.
Since most of failures in Dataset-1 have simple data flow and
most of the events are user-input events, our constraints on the
data flow (Section III.B) can quickly find a failure-
reproducible solution within 1 or 2 subtraces.

For Dataset-2, as shown in Table III, EvMin tests 16
subtraces on average. For some failures, the failure-
reproducible subtrace could be found in the first time, such as
failures 18 and 22. While some failures need to try many
subtraces, such as failure 14. It is because a variable may have
many type-compatible values that result in many solutions.

Time overhead. We use the execution time to evaluate
whether EvMin can quickly reduce an event trace. Table III

shows the result for each subject in Dataset-2 (column Time
under EvMin category). As a result, EvMin takes 132 seconds,
and EvMin with DD takes 161 seconds on average.

The execution time of EvMin consists of three parts:
collecting information, trace generating, and trace validating.
We give the time cost for each part to further analyze the time
overhead. They are showed under columns collect info, gen
trace, validate respectively in Table IV. (1) Collecting
information takes on average 63.9% of the time. It mainly
comes from the overhead of instrumentation that aims to
collect context information at runtime. As we can see in the
table, the time for collecting information for each subject
varies from 6 to 343 seconds. This is determined by the
complexity of the application or the user operations
(especially frequent UI operations on heavier applications). If
the application has complicated data dependences, our trace
collector may spend much time finding out the history of
events that modified a variable of interest (especially for
DOM variables). (2) The trace generating time is used for
constraint solving, and it takes 5.4% of the whole time. This
is determined by the performance of z3 and the number of
subtraces EvMin need to generate. When we focus on each
subtrace, it takes only on average 0.5 seconds. This value is
not high and shows that the constraint solver is good at
resolving our constraints. The reason is that each event
variable in our constraints has two states: 1 for selected or 0
for not selected. We also add a length constraint (Section
III.B.2) to generate candidate subtraces, which means there
are exactly n events hold value 1. (3) The trace validating
takes 30.6% of the time. Each subtrace takes on average 2.6
seconds. This value is not high because our policy to generate
candidate is from short to long, and all our tried subtraces are
no longer than the length of the failure-reproducible trace
(which is on average 7.1 as shown in Table III).

The overhead of EvMin with DD consists of two parts,
event trace reduction with EvMin, and further reduction with
DD. They take on average 82% and 18% of the total time,
respectively. This result shows that, EvMin can be prioritized
to reduce the original trace to minimal with little cost.

3) RQ3: How is EvMin compared to existing tools, e.g.,
delta debugging?

On Dataset-1 showed in Table II, both EvMin and delta
debugging can find the minimal failure-inducing events.
However, EvMin generates 70% fewer subtraces compared to
delta debugging.

TABLE III. RESULT ON DATASET-2

ID
Original trace Delta debugging EvMin EvMin with DD

#All #Expected#Reduced#SubtraceTime(s)#Reduced#SubtraceTime(s)+Subtrace+TimeTotal(s)
13 1051 5 5 156 1205 6 5 38 11 21 59
14 1189 5 5 147 1637 7 102 268 16 27 295
15 694 5 5 227 2771 12 18 126 13 18 144
16 342 2 2 38 150 2 1 9 3 7 16
17 1410 3 3 74 514 7 14 393 14 19 412
18 398 3 3 62 752 8 1 26 10 26 52
19 1326 2 2 48 702 8 7 165 11 34 199
20 1290 6 6 116 1034 8 1 162 7 22 184
21 367 2 2 23 148 2 6 63 7 14 77
22 617 5 5 92 1639 11 1 73 21 97 170

Avg. 868 2.7 2.7 98 1055 7.1 16 132 11 29 161

TABLE IV. TIME STATISTICS FOR EVMIN

ID
Collect info Gen trace Validate

Time(s)%TimeTime(s)%TimeTime(s)%Time
13 24 63.2% 3 7.9% 11 28.9%
14 20 7.5% 21 7.8% 227 84.7%
15 51 40.5% 11 8.7% 64 50.8%
16 6 66.7% 1 11.1% 2 22.2%
17 343 87.3% 13 3.3% 37 9.4%
18 18 69.2% 2 7.7% 6 23.1%
19 152 92.1% 2 1.2% 11 6.7%
20 129 83.6% 5 3.1% 28 17.3%
21 42 66.7% 12 19.0% 9 14.3%
22 61 83.6% 2 2.7% 10 13.7%

Avg. 84.6 63.9% 0.5* 5.4% 2.6* 30.6%
* Average time cost per subtrace

On Dataset-2, both EvMin with DD and delta debugging
can reduce the trace to minimal. However, as Table III shows,
EvMin generates 84% fewer subtraces and takes 86% less
time compared with delta debugging, and EvMin with DD
generates 72% fewer subtraces and takes 84% less time
compared to delta debugging. Although EvMin takes some
time to collect runtime information, EvMin avoids exploring
infeasible subtraces and the length of each subtrace is
relatively short (short subtraces are firstly explored until the
target subtrace is found). While delta debugging is on the
opposite, it may generate many infeasible subtraces and the
subtraces are relatively long (long subtraces are firstly
explored until the target subtrace is found).

VI. DISCUSSION

Limitations of EvMin. (1) Our implementation of
calculating type-compatible events for DOM is imprecise.
This may calculate ݏݐ݊݁ݒܧ(݁, as the superset of the precise (ݒ
one, and let EvMin generate more candidate subtraces.
Another problem is that it takes much memory. We leave it as
future work to improve the precision and memory overhead.
(2) As for the experimental result, one might argue EvMin
alone cannot reduce the trace to minimal, this is mainly
because our implementation does not model all the native
APIs. Our reduction result is already close to the minimal one,
and the performance is greatly improved. In addition, we
improve it to further reduce the remaining irrelevant events
using delta debugging with little time overhead.

Threats to validity. A threat to our evaluation is that only
10 real-world failures are evaluated. However, the selected
applications are developed for different purpose and have high
popularity. The selected failures need multiple steps to be
reproduced. This implies they have reasonable complexity.

VII. RELATED WORK

We focus on the work that concern event trace reduction
in JavaScript applications, delta debugging-based fault
isolation, and program analysis utilizing program dependence.

Event trace reduction in JavaScript applications.
Hammoudi et al. [5] adapt delta debugging [8] to reduce event
traces for JavaScript applications. The algorithm repeatedly
selects subtraces of the events, and replays them to determine
whether these subtraces can, by themselves, reveal the failure.
Their work relies on trial-and-error and does not care the
relationship among events, while EvMin utilizes the context
information to generate candidate subtraces, and by this way
greatly narrows down the search space. JSTrace [10] adopts
dynamic slicing [11][12][13] to trace the precise program
dependence and remove the events that are not depended by a
failure. However, not all remaining events are necessary for
reproducing the failure.

Delta debugging-based fault isolation. Delta debugging
is commonly used for trace minimization and fault isolation.
Andreas proposes a series of delta debugging algorithms for
simplifying failure inducing input [8], minimizing
reproduction [23], failure-inducing thread schedules [24], and
isolating cause-effect chains [7]. HDD [9] is proposed to
speed up delta debugging by using the hierarchical structure

of the input, such as XML, AST of a program. However, HDD
does not help our case since the input of our approach is not
structured. The hill climbing approaches [25][26] aim to
generate test cases as diverse as possible, and do not help for
our purpose. GUI event trace minimizing [27] on Android
proposes a variant of delta debugging [6][8] to find smaller
event traces that reach a desired activity with high probability.

Program analysis utilizing program dependence.
Sriraman et al. [28] identify failure-irrelevant threads by
analyzing the program’s control and dataflow dependence.
Lots of dynamic slicing approaches [29][30] are proposed for
slicing programs. However, they face the problem that a
computation may still be redundant even if it has data or
control dependence to the buggy state. LEAN [31] proposes
two redundancy criterions that characterizes the redundant
computation in a buggy trace to simplify the concurrency
buggy execution. But their redundant criterions cannot help us
remove failure irrelevant events. Thin slicing [32]
heuristically omits some data dependences to reduce a slice
since not all statements that may affect a point of interest
appear equally relevant to a human. As for observation-based
slicing [33], its concept of moving deletion window is
meaningless in our case, since the deletion unit in a trace for
JavaScript applications is one event. Thus, the algorithm will
degrade to delete one event at a time from an event trace.
SimpleTest [34] presents a technique that simplifies tests at
the semantic level by repeatedly replacing referred
expressions in each statement with other alternatives from the
test code itself. Some GUI testing tries to reduce test suites by
applying event dependence analysis [35], symbolic execution
[36], program slicing [37] or partial order reduction [38], to
improve their performance. Different from these work, our
approach only requires compatible context instead of precise
program dependence.

VIII. CONCLUSION

In this paper, we propose a novel approach to remove
failure-irrelevant events in an event trace for client-side
JavaScript applications. To find the minimal failure-inducing
events efficiently, we build constraints among events, and
require that each event’s context is respected before and after
reduction. Thus, we can avoid generating syntactically
infeasible candidate event subtraces. We have implemented
our approach as a tool, EvMin. The evaluation on 10 real-
world client-side JavaScript application failures shows that
EvMin can efficiently remove failure-irrelevant events.
Compared with delta debugging, EvMin generates 72% fewer
candidate event subtraces and takes 84% less time overhead.
In the future, we plan to apply our approach on Android
applications, which usually generate long event traces, too.

ACKNOWLEDGMENT

This work was supported by National Key Research and
Development Plan (2016YFB1000803), National Natural
Science Foundation of China (61672506, 61732019,
61702490), Key Research Program of Frontier Sciences, CAS
(Grant No. QYZDJ-SSW-JSC036), and Youth Innovation
Promotion Association at Chinese Academy of Sciences.

REFERENCES
[1] J. Mickens, J. Elson, and J. Howell, “Mugshot : Deterministic Capture

and Replay for JavaScript Applications,” in Proceedings of the
USENIX Conference on Networked Systems Design and
Implementation(NSDI), 2010, pp. 159–174.

[2] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive
Record/Replay for Web Application Debugging,” in Preceedings of
User Interface Software and Technology (UIST), 2013, pp. 473–484.

[3] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman,
“Understanding JavaScript Event-based Interactions,” in Proceedings
of International Conference on Software Engineering (ICSE), 2014,
pp. 367–377.

[4] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A Selective
Record-replay and Dynamic Analysis Framework for JavaScript,” in
Proceedings of the Joint Meeting on Foundations of Software
Engineering(ESEC/FSE), 2013, pp. 488–498.

[5] M. Hammoudi, B. Burg, G. Bae, and G. Rothermel, “On the Use of
Delta Debugging to Reduce Recordings and Facilitate Debugging of
Web Applications,” in Proceedings of Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software (ESEC/FSE), 2015, pp. 333–344.

[6] A. Zeller, “Yesterday, My Program Worked. Today, It Does Not.
Why?,” in Proceedings of the European software engineering
conference held jointly with the ACM SIGSOFT international
symposium on Foundations of software engineering (ESEC/FSE),
1999, vol. 24, no. 6, pp. 253–267.

[7] A. Zeller, “Isolating Cause-Effect Chains from Computer Programs,”
ACM SIGSOFT Software Engineering Notes, vol. 27, no. 6, pp. 1–10,
2002.

[8] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
inducing Input,” IEEE Transactions on Software Engineering (TSE),
vol. 28, no. 2, pp. 183–200, 2002.

[9] G. Misherghi and Z. Su, “HDD: Hierarchical Delta Debugging,” in
Proceedings of the International Conference on Software
Engineering(ICSE), 2006, pp. 142–151.

[10] J. Wang, W. Dou, C. Gao, and J. Wei, “Fast Reproducing Web
Application Errors,” in Preceedings of International Symposium on
Software Reliability Engineering(ISSRE), 2015, pp. 530–540.

[11] B. Korel and J. Laski, “Dynamic Program Slicing,” Information
Processing Letters, vol. 29, no. 3, pp. 155–163, 1988.

[12] X. Zhang, N. Gupta, and R. Gupta, “A Study of Effectiveness of
Dynamic Slicing in Locating Real Faults,” Empirical Software
Engineering (ESE), vol. 12, no. 2, pp. 143–160, 2007.

[13] R. Gopal, “Dynamic Program Slicing Based on Dependence
Relations,” in Proceedings of the International Conference on
Software Maintenance(ICSM), 1991, pp. 191–200.

[14] “Document Object Model (DOM) Level 3 Events Specification.”
[Online]. Available: http://www.w3.org/TR/2011/WD-DOM-Level-3-
Events-20110531/.

[15] F. S. Ocariza, G. Li, K. Pattabiraman, and A. Mesbah, “Automatic
Fault Localization for Client-side JavaScript,” Software Testing,
Verification and Reliability, vol. 26, no. 1, pp. 69–88, 2016.

[16] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic Symbolic
Testing of JavaScript Web Applications,” in Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software
Engineering(FSE), 2014, pp. 449–459.

[17] A. J. Ko and B. A. Myers, “Extracting and Answering Why and Why
Not Questions about Java Program Output,” ACM Transactions on
Software Engineering and Methodology(TOSEM), vol. 20, no. 2, pp.
1–36, 2010.

[18] “Z3.” [Online]. Available: https://z3.codeplex.com/.

[19] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis
of systems(TACAS), 2008, pp. 337–340.

[20] K. Bajaj and A. Mesbah, “Synthesizing Web Element Locators,” in
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015, pp. 331–341.

[21] A. Feldthaus, M. Schafer, M. Sridharan, J. Dolby, and F. Tip, “Efficient
Construction of Approximate Call Graphs for JavaScript IDE
Services,” in Proceedings of International Conference on Software
Engineering (ICSE), 2013, pp. 752–761.

[22] “XML Path Language (XPath).” [Online]. Available:
https://www.w3.org/TR/xpath/.

[23] M. Burger and A. Zeller, “Minimizing Reproduction of Software
Failures,” in Proceedings of the International Symposium on Software
Testing and Analysis(ISSTA), 2011, pp. 221–231.

[24] J.-D. Choi and A. Zeller, “Isolating Failure-Inducing Thread
Schedules,” in Proceedings of the ACM SIGSOFT international
symposium on Software testing and analysis(ISSTA), 2002, pp. 210–
220.

[25] A. Marchetto and P. Tonella, “Using Search-based Algorithms for
Ajax Event Sequence Generation During Testing,” Empirical Software
Engineering, vol. 16, no. 1, pp. 103–140, 2011.

[26] H. Dan, M. Harman, J. Krinke, L. Li, A. Marginean, and F. Wu,
“Pidgin Crasher: Searching for Minimised Crashing GUI Event
Sequences,” in Symposium on Search-Based Software
Engineering(SSBSE), 2014, pp. 253–258.

[27] Q. Zhang and B. Goncalves, “Minimizing GUI Event Traces,” in
Preceedings of the 24th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering(FSE), 2016, pp. 422–434.

[28] S. Tallam, C. Tian, X. Zhang, and R. Gupta, “Enabling Tracing Of
Long-Running Multithreaded Programs Via Dynamic Execution
Reduction,” in International Symposium on Software Testing and
Analysis (ISSTA), 2007, pp. 27–218.

[29] J. Krinke, “Context-Sensitive Slicing of Concurrent Programs,” in
Proceedings of the European Software Engineering Conference held
jointly with ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE), 2003, pp. 178–187.

[30] D. Giffhorn and C. Hammer, “Precise Slicing of Concurrent Programs:
An Evaluation of Static Slicing Algorithms for Concurrent Programs,”
in Proceedings of International Conference on Automated Software
Engineering(ASE), 2009, vol. 16, no. 2, pp. 197–234.

[31] J. Huang and C. Zhang, “LEAN: Simplifying Concurrency Bug
Reproduction via Replay-supported Execution Reduction,” in
Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications(OOPSLA), 2012,
pp. 451–466.

[32] M. Sridharan, S. J. Fink, R. Bodik, M. Sridharan, S. J. Fink, and R.
Bodik, “Thin Slicing,” ACM SIGPLAN Notices, vol. 42, no. 6, p. 112,
2007.

[33] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo,
“ORBS: Language-Independent Program Slicing,” in Proceedings of
the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), 2014, pp. 109–120.

[34] S. Zhang, “Practical Semantic Test Simplification,” in Proceedings of
the International Conference on Software Engineering (ICSE), 2013,
pp. 1173–1176.

[35] S. Arlt, A. Podelski, C. Bertolini, M. Schäf, I. Banerjee, and A. M.
Memon, “Lightweight Static Analysis for GUI Testing,” in
Proceedings of International Symposium on Software Reliability
Engineering(ISSRE), 2012, pp. 301–310.

[36] L. Cheng, J. Chang, Z. Yang, and C. Wang, “GUICat: GUI Testing as
a Service,” in Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering(ASE), 2016, pp. 858–863.

[37] S. Arlt, A. Podelski, and M. Wehrle, “Reducing GUI Test Suites via
Program Slicing,” in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), 2014, pp. 270–281.

[38] P. Maiya, R. Gupta, A. Kanade, and R. Majumdar, “Partial Order
Reduction for Event-Driven Multi-threaded Programs,” in
Proceedings of International Conference on Tools and Algorithms for
the Construction and Analysis of System (TACAS), 2016, pp. 680–697.

[39] “Chartjs issue 503.” [Online]. Available:
https://github.com/nnnick/Chart.js/issues/503.

[40] “Charjs issue 920.” [Online]. Available:
https://github.com/nnnick/Chart.js/issues/920.

[41] “HandsonTable issue 638.” [Online]. Available:
https://github.com/handsontable/handsontable/issues/638.

[42] “JPushMenu issue 1.” [Online]. Available:
https://github.com/takien/jPushMenu/issues/1.

[43] “TodoList.” [Online]. Available: https://github.com/01org/webapps-
todo-list.

[44] “Fullpage issue 146.” [Online]. Available:
https://github.com/alvarotrigo/fullPage.js/issues/146.

[45] “Editor.md issue 18.” [Online]. Available:
https://github.com/pandao/editor.md/issues/18.

[46] “My-mind issue 12.” [Online]. Available:
https://github.com/ondras/my-mind/issues/12.

[47] “Foundation-site issue 7528.” [Online]. Available:
https://github.com/zurb/foundation-sites/issues/7528.

[48] “Reveal issue 463.” [Online]. Available:
https://github.com/hakimel/reveal.js/issues/463.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

